摘要
图论方法已被证明是理解、表征和量化复杂大脑网络的有效工具。然而,定量比较两个图形的方法却较少受到关注。在一些网络神经科学应用中,比较大脑网络确实是必不可少的。在这里,本研究讨论了近年来用于比较大脑网络的技术现状、挑战以及一系列分析工具。本文首先介绍了脑网络应用中的图形相似性问题,然后描述了现有指标和算法的方法背景,评估了它们的优势和局限性。此外,还报告了从正常大脑网络中获得的具体应用结果。更准确地说,本研究展示了利用大脑网络相似性来构建“网络中的网络(network of networks)”的潜力,从而为人脑中的对象分类提供新的见解。
脑网络的比较
在一些领域中,理解和表征复杂系统的关键在于从数据中构建网络并进行推断。在网络神经科学中,脑图模型是大脑元素(神经元、神经元集合或脑区)之间相互作用的抽象数学表征。图中的节点代表通过特定分割技术获得的神经元集合或脑区。边代表神经元元素之间的功能或结构联系。
随着网络神经科学的应用越来越广泛,比较大脑网络的技术也逐渐增多。这些比较包括但不限于:(i)对不同被试群体的大脑网络进行统计比较,或者对同一被试在治疗或刺激前后的大脑网络进行比较;(ii)通过量化功能和拓扑相似性来区分神经系统疾病;(iii)对不同时序脑网络的变化进行量化分析;(iv)比较真实脑网络与生成网络模型(见图1);以及(v)跨物种比较神经系统的拓扑结构。
图1.图比较在网络神经科学中的应用。
用于脑网络比较的方法和策略可以分为两大类:第一类是统计比较,可以应用各种图论指标来表征大脑网络的拓扑结构。本文中使用的图相关的定义量和符号如表1所示。
表1
第二类是基于距离的图比较算法,其主要目的是通过研究一些从应用角度来看很重要的特征来量化两个网络之间的距离(相似性分数)。虽然大多数算法是针对特定领域开发的,但它们确实是一种量化脑网络之间相似性的有用工具(图2)。
图2.图比较方法。
统计比较
脑网络之间的统计比较可以分为两种类型。首先是将真实的大脑网络与随机网络进行比较,主要目的是验证大脑网络的某些特征是否与随机网络显著不同。其次,网络统计比较可用于健康对照组和患者等两组被试的脑网络比较。我们可以将用于比较脑网络的指标分为四类:全局水平、节点水平、边水平和图谱分析。
全局水平分析
在这种情况下,图指标是针对整个网络计算的,每个网络可以得到一个值。然后,应用统计检验对两组(如健康对照组与患者组)进行比较。
小世界属性。网络的小世界属性最初由Newman和Watts(1999)提出。此外,还提出了与小世界属性相关的其他度量指标,包括小世界系数、小世界度量、小世界倾向和小世界指数。其特点是具有较低的平均最短路径长度(L)和较高的聚类系数(CC)。简而言之,平均路径长度L被定义为一个节点到另一个节点所需的平均最小边数。节点的聚类系数CC定义为节点邻居之间现有连接的数量与它们之间所有可能连接的比值。CC量化了网络信息传递的局部效率。
模块化。模块化是指将网络划分为若干不重叠的组或模块,也称为社区。网络模块由图中的节点子集定义,模块内的节点紧密连接,并且与模块外的节点之间弱连接。人们已经提出了多种方法来解决复杂网络的社区结构问题。在脑网络应用中,模块化最大化方法是脑网络模块检测中最常用的方法。该方法的主要思想是将网络中的节点划分为K个不重叠的社区,以最大化模块化质量函