摘要
人类面孔在情绪表达和社会交流中起着核心作用。情感和躯体运动网络会产生面部行为,但目前尚不清楚这些面部行为是否在大脑结构解剖中具有相应的表征。本研究对55名健康老年人在观看情绪视频时的16种面部行为进行了编码,并探索了面部行为的个体差异是否与大脑特定区域的灰质体积变化有关。基于体素的形态测量分析显示,在厌恶试次(即更明显的皱眉、紧眼、皱鼻、撇嘴)和愉悦试次(即更明显的微笑和眼睛紧缩)中,更强烈的情绪面部行为与中扣带回、辅助运动区和中央前回的更大灰质体积有关,这些区域涉及情感和躯体运动网络。然而,在整个试次中,这些面部行为(及其他行为)仅与中央前回的灰质体积相关,而该区域是躯体运动网络的一个核心区域。这些发现表明,情感和躯体运动网络存储了面部行为的结构表征,而中扣带回对于在情绪出现时产生可预测的面部运动至关重要。
引言
人类拥有表情丰富的面孔。尽管面部在情绪表达和社会交流中很重要,但关于大脑如何控制面部肌肉仍然存在许多问题。情感和躯体运动系统是分布式网络,能够对构成面部的数十块肌肉产生有针对性的变化。情感运动系统的核心位于中扣带回(MCC)和前扣带回(ACC),与杏仁核、下丘脑和导水管周围灰质紧密相连。相比之下,躯体运动系统以中央前回和前运动皮层为核心,并通过锥体束投射到脊髓和延髓运动核团。辅助运动区(SMA)和面部运动核团参与了这两个系统。
关于情感和躯体运动网络在面部运动控制中的作用,许多知识来自于对其他物种的研究。在非人灵长类动物的示踪研究中,发现面部在大脑区域中的映射与人类前MCC、后MCC、中央前回、前运动皮层、SMA和面部运动核团相对应。这些区域的结构组织揭示了这些网络是如何产生精确和可预测的面部运动的。在每个区域中,存在神经元体部图像组织的证据,即产生相似身体运动的神经元会聚集在一起。尽管已有研究,但关于支配不同面部肌肉的神经元在这些区域中是呈离散还是交错的组织方式,仍然是一个持续讨论的主题。在面部运动核团中,支配面部肌肉的下运动神经元存在一定的体部图像现象,因为支配相似面部肌肉组织的神经元会纵向排列在一起。
在人类研究中,缺乏面部肌肉组织的精细神经解剖图谱。电刺激、功能神经成像和病变研究揭示了人类中央前回、SMA和ACC/MCC中有明确的头面部表征,但对于特定面部动作的结构和功能表征却知之甚少。一项电刺激研究考察了刺激特定脑区所引起的面部运动,研究探讨了中央前回,并揭示了面部不同部位(如前额、眉毛、眼睛、鼻子、脸颊、嘴唇和下颌等)的可分离映射。在面部肌肉层面,一项功能性神经成像研究发现,中央前回中有四种随意面部运动的不同但重叠的表征。然而,对摆姿势(posed;刻意做出的)面部行为的研究无法揭示情绪引发的非随意面部运动的解剖学基础。
虽然情感和躯体运动网络可能都参与了人类的面部表情行为,但每个系统如何支持情绪面部行为的产生尚不清楚。最初的临床研究发现,中央前回面部区域受损的个体无法按照指令移动面部肌肉,但在情绪状态下仍能自发地表现出面部行为。其他研究发现,MCC、ACC和SMA受损的个体情绪面部行为发生改变,但随意面部行为保持正常。这些研究表明,情感和躯体运动网络是独立运作的。后续研究显示了情感和躯体网络在皮层和皮层下水平之间存在相互连接,从而形成了一种更复杂的情况。这些网络之间的相互作用对许多功能都很重要。例如,面部运动核团与导水管周围灰质之间的连接在发声过程中调节面部肌肉,而SMA和aMCC之间的连接则有助于运动规划。总的来说,虽然情感和躯体运动网络可以独立运作,但一个系统的活动可以影响另一个系统的活动。
在以往的人类研究中,由于很少有研究包括详细的神经成像和面部行为测量,因此很难确定情感和躯体运动网络在面部运动控制中的作用。电刺激研究可以检查面部行为背后的神经机制,但这些研究数量较少且具有侵入性,通常依赖于对面部肌肉运动的定性描述。功能神经成像研究主要关注面部行为的神经相关性,但只研究了随意面部运动或单一的自发情绪面部行为(即微笑)。量化面部行为也面临诸多挑战。依赖人工评估者的手动面部编码系统仍然是测量面部行为的金标准。在任何情况下对面部行为进行编码都很繁琐,因为面部运动是动态的(即肌肉随时间收缩和放松)且相互依赖的(即某些肌肉的激活会改变其他肌肉的外观)。因此,手动编码系统需要大量的培训,即使是对有限数量的行为数据进行编码也需要相当长的时间。综上所述,这些方法上的挑战限制了在大脑中定位特定面部运动表征的研究工作。
在这里,本研究考察了人类面部行为的神经结构解剖学,使用了一种客观编码系统来量化健康老年人在观看一系列情绪电影片段后的面部行为。鉴于大脑结构和功能紧密相连,本研究进行了结构神经影像学分析,以识别与特定面部行为相关的脑区灰质体积。由于老年人在一生的情绪表达和社会交流中发展并完善了他们的面部-大脑连接,因此健康的老年样本可能是映射面部行为和灰质体积之间关系的理想选择。首先,本研究考察了在特定试次中表现出更强情绪面部行为的参与者,其MCC(情绪运动系统中的枢纽,在情绪生成中起关键作用)的灰质体积是否更大。然后,本研究考察了在所有试次中表现出更多面部行为的参与者,其中央前回(躯体运动网络中的关键区域)面部区域的灰质体积是否更大。正如经验丰富的音乐家(相比于那些较少演奏的人)练习复杂的手指运动时,在中央前回的手部区域具有更大的灰质体积一样,本研究假设更具表现力的参与者在面部运动相关区域也会有更大的灰质体积。
材料与方法
参与者
本研究从加州大学旧金山分校(UCSF)的Hillblom健康老龄化网络中招募了55名健康老年人(平均年龄=74.0岁,标准差=4.3岁,62%为女性)。这些参与者是从社区招募的志愿者,他们接受了多方面的评估,包括临床病史、神经系统检查、神经心理测试、信息访谈以及结构性磁共振成像(MRI)。参与者无既往或当前的神经系统或精神障碍,也没有轻度认知障碍或痴呆。参与者在完成研究前提供了知情书面同意,该研究得到了UCSF人类研究保护计划的批准。
情绪评估
程序
参与者坐在一把舒适的椅子上,椅子距离显示器(21.5英寸)4.25英尺。一个遥控的、半遮蔽的摄像机记录了测试过程;在测试前的知情同意过程中,告知参与者本研究将使用摄像机进行记录。参与者接受了关于整体测试结构的说明,并完成了一系列旨在评估情绪各个方面的任务;本研究仅对情绪反应任务进行分析。
情绪反应任务
参与者观看了五个情绪视频片段。在观看每个视频片段之前,参与者静坐60s(作为试次前基线期),此时他们注视着白色屏幕上的黑色“X”。每个视频片段旨在引发一种特定的情绪(敬畏、悲伤、愉悦、厌恶或关爱),时长约为一分半钟。敬畏的视频片段展示了宇宙浩瀚的自然景象(来自《Planet Earth》);悲伤的视频片段展示了一位母亲得知她的家人发生车祸的医院场景(来自《21 Grams》);愉悦的视频片段展示了一个婴儿在笑(来自YouTube的《Baby Ripping Paper》视频);厌恶的视频片段展示了从耳道中取出耳垢的过程(来自YouTube的《Ear Wax》视频);而关爱的视频片段展示了人类婴儿与小动物互动的场景(来自《Babies Around The World》)。所有参与者按照相同的顺序观看视频。这些视频已被证实可以诱发目标情绪。
测量
主观体验。在观看完每个短片后,有30s的试次后阶段,此时参与者在屏幕上看到一个“X”。为了评估主观体验,参与者评估了他们在观看每个片段时所感受到的各种情绪(即敬畏/惊叹、关爱/亲情、愉悦/快乐、兴奋/热情、尴尬、骄傲、惊讶、愤怒、悲伤、厌恶和恐惧)的程度。使用“完全没有”、“一点”或“很多”来进行评估。
面部行为。本研究使用动态情感面部动作编码系统(DFACS),这是一个基于面部动作编码系统(FACS)的编码系统,旨在简化和加快研究人员的手动面部编码过程。在DFACS和FACS中,面部运动被称为动作单元(AUs),每个AU反映一个或多个基础面部肌肉的可观察收缩(例如,AU 12指的是嘴角上扬的面部运动,这种行为通常被认为是微笑)。AU的激活可以单独发生,也可以与其他AU一起发生,而且这种激活不一定总是传达特定的情感。一个由四位获得FACS认证的编码员组成的团队,使用Noldus Observer XT软件(第14版)对参与者在每个视频片段中最强烈的30s内16个与情绪相关的AU活动进行评分(由编码前的独立评分者组确定)。
神经影像采集与预处理
采集
使用TIM Trio扫描仪(Siemens,Iselin,NJ)进行3T MRI检查。结构T1图像使用12通道头部线圈获取(160个矢状面,层厚:1.0mm,FOV:256×230mm2,矩阵:256×230,体素大小:1.0×1.0×1.0mm3,TR:2300ms,TE:2.98ms,翻转角:9°)。
预处理
在任何预处理步骤之前,本研究对T1图像进行了目视检查,以排除质量较差的扫描数据。根据目视检查,没有排除任何参与者。使用Matlab(R2018b)中的计算解剖工具箱CAT12进行同质性检查(马氏距离),该方法使用加权的整体图像质量和图像的平均相关性来识别与样本平均偏差最大的扫描。这项全面的质量检查表明样本中没有任何扫描是异常值,因此无需剔除参与者数据。然后,将图像分割为灰质、白质和脑脊液。将灰质图像归一化到MNI空间,并使用8mm的高斯核进行平滑处理。这些预处理后的灰质图像随后用于线性回归分析。
验证性研究
为了证实研究结果的有效性,本研究在一组独立的健康成人样本(N=60)中进行了额外的神经成像分析,这些样本完成了脑结构MRI扫描,并且有来自类似情绪反应任务的面部编码数据。该样本使我们能够检验本研究结果在不同队列和任务中的稳健性。本研究还将研究结果与一项先前的人类电刺激研究进行了比较。Roux等人(2020)发现,刺激中央前回的某些区域会引发面部运动(前额、眉毛、眼睛、鼻子、脸颊和下颌)。在中央前回内,这些面部运动的平均坐标为x=-53.5,y=-2.7,z=36.9。本研究使用MARSBAR工具箱在Roux等人(2020)报告的峰值坐标周围创建了一个10mm的球体,并将本研究结果与Roux等人的发现进行了比较绘制。
结果
视频引发的主观体验和面部行为
在整个任务过程中,参与者报告了一系列主观体验,并展示了多种面部行为。在所有试次中,16个编码的AUs中有87%至少被激活过一次,激活强度从轻微到强烈不等。
在厌恶试次中,73%的参与者报告感受到了中度到高度的厌恶(33%报告“很多”,40%报告“有点”)。在厌恶试次中,AUs 4(皱眉)和6/7(眼睛收紧)的总活动得分最高,因此本研究计算了这个试次中AUs 4和6/7的总活动分数。此外,本研究还考虑了其他典型的情绪行为。由于皱鼻和撇嘴(AUs 9和10)是常见的厌恶面部动作,本研究也计算了这些AUs在厌恶试次中的总活动得分。在这个试次中,较强的厌恶体验与AU 4的活动无显著关联,rho=0.002,p=0.984,但更强的厌恶、惊讶和敬畏/惊叹体验(该试次中最强烈的情绪)与AUs 4、6/7、9、10的活动增加显著相关,rho=0.29,p=0.032。
在愉悦试次中,100%的参与者报告感受到了中度到高度的愉悦(88%报告“很多”,12%报告“有点”)。在愉悦试次中,AUs 12(嘴角上扬)和6/7(眼睛收紧)的总活动得分最高,因此本研究计算了该试次中AUs 12和6/7的总活动分数。由于微笑和眼睛收紧是愉悦时的典型面部行为,因此本研究没有计算其他额外指标。在这个试次中,愉悦体验与AU 12活动之间的正相关边缘显著,rho=0.26,p=0.051。较强的愉悦/快乐、关爱/亲情和兴奋/热情(该试次中最强烈的情绪)体验与AUs 12和6/7的活动增加显著相关,rho=0.30,p=0.023。
MCC和SMA体积与情绪面部行为的相关性
神经影像分析显示,在厌恶试次中,更大的皱眉和眼睛收紧(AUs 4 & 6/7)与更大的右后MCC灰质体积相关。这些面部动作也与双侧中央前回的灰质体积相关(未校正p<.005),如图1A所示。相反,厌恶试次中的皱鼻和上唇上扬(AUs 9 & 10)增多与双侧前MCC的灰质体积较大相关(图1A)。而在愉悦试次中,微笑和眼睛收紧(AUs 12 & 6/7)的增多则与左前MCC和右侧SMA的更大灰质体积相关(图1B)。
图1.中扣带回在特定试次中的情绪面部行为。
在所有试次中,中央前回体积与面部行为的相关性
本研究结果表明,MCC和SMA对在特定试次中产生情绪面部行为至关重要,同时也揭示了中央前回在面部运动表现中起着关键作用。接下来,本研究探讨了在去除与情绪诱发试次的关联后,这些相同面部行为的神经相关性是否会出现不同的模式。与仅在厌恶试次中激活的皱鼻和上唇上扬(AUs 9 & 10)不同,皱眉(AUs 4 & 6/7)和微笑(AUs 12 & 6/7)在所有五个试次中均被激活。因此,本研究计算了所有五个试次中皱眉和微笑的总活动分数,发现面部行为的增加与中央前回的神经活动显著相关(p<.005),但与MCC无关。在各试次中表现出较多皱眉和眼睛收紧(AUs 4 & 6/7)以及较多微笑和眼睛收紧(AUs 12 & 6/7)的参与者,其双侧中央前回的面部区域灰质体积更大(图2)。
图2.所有试次中总皱眉和总微笑的神经相关性。
当我们创建一个衡量总面部行为的指标时,得到了类似的结果,该指标代表了参与者在五个试次中所有AUs的总激活量。与各试次中皱眉和微笑的分析类似,总面部行为也与双侧中央前回的灰质体积之间存在正相关关系(图3A和B)。而总面部行为与MCC或SMA的灰质体积之间没有相关性。当我们解构总面部行为分数,以检查各试次中单个AUs的总活动是否也显示出类似的模式时,研究结果发现AUs 1、2、4、6/7和12的总活动增加也与双侧中央前回的灰质体积较大有关(图3C和D)。在这些分析中,AU 12的结果经多重比较校正后仍然显著(pFWE<.05)。
图3.面部行为与中央前回结构特征的显著相关性。
验证性研究
为了检验原始结果的可重复性和稳健性,本研究执行了进一步的分析。首先,对一个由60名健康成人组成的独立样本进行了VBM分析,以验证之前的研究结果(p<.005,k>10)。与最初的研究结果一致,该分析表明,在情绪反应任务的各个试次中,总面部行为越多的参与者,其右侧中央前回(T=3.44,40,4,28)、左侧SMA(T=3.35,-8,-10,70)和左侧中央前回(T=3.32,-56,6,38)的灰质体积越大。在这一统计阈值下,中央前回的双侧聚类接近原始分析中与总面部行为相关的中央前回区域(图4)。
图4.面部行为在中央前回的面部区域具有结构相关性。
其次,将原始研究和验证性研究中与总面部行为相关的团簇与Roux等人(2020)电刺激研究中报告的面部行为均值坐标叠加。这些比较同样发现总面部行为与中央前回的面部区域之间存在结构相关性(图4)。
结论
本研究结果表明,与其他运动行为一样,人类面部行为在大脑的结构解剖中也有相应的表征。在情绪发生时表现出的面部行为是经过时间验证的运动序列,具有适应性功能。与之前的研究结果一致,本研究表明,MCC及其连接的情感运动网络结构在产生伴随情绪的面部行为中起着核心作用。中央前回以及躯体网络中的结构对支持一般面部行为至关重要。该结果扩展了现有的人类面部行为神经解剖模型,并提出MCC存储了经常共现的面部行为组合表征,这种方式可以有效地产生对个体和群体生存至关重要的模式化情绪面部行为。
参考文献:Fate Noohi, Eena L Kosik, Christina Veziris, David C Perry, Howard J Rosen, Joel H Kramer, Bruce L Miller, Sarah R Holley, William W Seeley, Virginia E Sturm, Structural Neuroanatomy of Human Facial Behaviors, Social Cognitive and Affective Neuroscience, 2024;, nsae064, https://doi.org/10.1093/scan/nsae064
小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~