推动TMS-EEG数据预处理标准化

摘要

将非侵入性脑刺激(NIBS)技术与脑电生理活动记录相结合是神经科学领域广泛使用的方法。同时结合经颅磁刺激(TMS)与脑电图(EEG)尤其成功。但是,为了有效地与大脑活动进行交互,所需的强磁脉冲不可避免地会在同步EEG采集过程中产生伪影。因此,需要进行仔细但有效的预处理,以高效去除这些伪影。然而,正如文献中所报道的那样,不同的预处理方法可能会导致结果存在差异。在这里,本研究旨在分析目前可用的三种主要TMS-EEG预处理流程,即ARTIST、TESA和SOUND/SSP-SIR,为需要在不同方法之间做出选择的研究人员提供参考。与先前的研究不同,本研究使用具有已知真实值(无伪影的重建信号)的合成TMS-EEG信号对这些流程进行了测试。通过这种方式,可以精确和定量地评估每个流程的可靠性,为未来的研究提供更可靠的参考。总的来说,本研究发现所有流程的性能良好,但在真实值重建的时空精度方面存在差异。最重要的是,这三种流程对试次间变异性的影响不同,其中ARTIST引入了真实信号本不存在的试次间变异性。

引言

非侵入性脑刺激(NIBS)实验结果的不一致性在以往的文献中已有大量讨论。结果的不一致性主要归因于个体间和个体内因素。就前者而言,影响个体间差异的一个主要因素是大脑的结构和功能特性,这尤其影响TMS-EEG研究的结果。在TMS-EEG研究中,TMS诱发电位(TEPs)的振幅和潜伏期与个体的大脑结构特征有关。另一个影响因素是波动的大脑状态动态,这种动态可以调节TMS对电生理和行为指标的影响。例如,单脉冲TMS(spTMS)诱发的TEP幅度和重复TMS(rTMS)对TEP幅度的调节效应都取决于刺激时的皮层兴奋性状态。因此,必须控制上述个体内和个体间的变异性因素,以减少不同研究之间结果的不一致性。

目前已经提出了不同的技术来减少TMS-EEG记录阶段的个体间和个体内变异性。例如,Casarotto等人(2022)开发了一种工具箱,用于实时监测记录的TEPs质量和伪影成分的一致性。另一方面,还可以使用其他技术,如Lioumis和Rosanova(2022)提出的用结构神经导航来补充TMS-EEG记录。

然而,研究中观察到的变化不仅仅是由于个体内和个体间的差异,而且还受到清理TMS-EEG数据中伪影所采用的不同预处理流程所带来的影响。实际上,TMS不仅会引发皮层反应,还会在EEG记录中引入电磁和生理伪影。TMS脉冲与导电的EEG电极和导线产生电磁相互作用,利用其感应和电容效应,并与头皮的神经肌肉系统产生生理相互作用。通过磁感应,磁场会产生电流,从而导致伪影电位的出现,这些伪影电位的幅度可能会使放大器的电子元件饱和。磁梯度的强度与电极和皮肤之间的微小电容耦合,导致记录中出现大幅的波动和衰减伪影。磁梯度还会与头皮肌肉相互作用,产生肌肉伪影。所有这些伪影活动掩盖了源于神经过程的真实EEG反应。因此,如果不进行准确的预处理,就不可能观察到真正的TMS诱发活动(例如TEPs)。为此,人们开发出了不同的预处理流程,以处理TMS在EEG信号中引入的伪影。其中最常见的方法是独立成分分析(ICA)和手动识别TESA中的伪影。其他方法包括基于ICA的全自动化预处理流程(ARTIST),以及一种非ICA的预处理流程,采用SOUND(利用去噪算法的源估计)和SSP-SIR(信号空间投影-源信息重建)来校正TMS相关的伪影。

最近的研究试图确定不同的预处理流程对重建TMS-EEG信号的影响,尤其是对其变异性的影响。例如,Bertazzoli等人(2021)在相同的TMS-EEG数据集上测试了四种不同的流程(即ARTIST、TESA、SOUND/SSP-SIR和TMSEEG)。研究结果显示,所选流程对获得的预处理TEPs(诱发电位)有显著影响。具体来说,不同流程的TEPs振幅和全局平均场功率(GMFP)各不相同,并且头皮电位的相关性也存在显著差异。此外,在两个独立实验阶段获得的TEPs重测信度在不同流程之间也存在显著差异。这些发现得到了另一项采用类似方法的研究的支持,该研究强调了即使在相同处理流程中进行微小调整,也可能导致重建的TMS诱发活动在幅度和空间分布上产生不同的结果。综上所述,这些研究表明,数据处理所使用的方法对最终得到的TMS-EEG信号有很大影响。

最近,一些研究通过将模拟的TMS伪影叠加到已知的真实EEG信号上,探讨了不同方法去除TMS相关伪影的有效性。例如,Atti等人(2024)测试了独立成分分析(ICA)在去除各种模拟TMS-EEG伪影方面的有效性,而Mutanen等人(2024)则比较了ICA和SSP-SIR在去除TMS脉冲诱发的肌肉伪影方面的效果。后一项研究报告指出,当伪影的地形与感兴趣信号的地形之间存在显著差异时,SSP-SIR在清除伪影方面的表现更好。此外,这两项研究都强调,当伪影的特征变化不大时,使用ICA来去除这些伪影可能会产生不准确的结果。虽然这些研究引入了已知的真实信号作为先验知识,但它们主要关注特定的伪影或分析步骤,而未考虑整个处理过程对TMS-EEG数据的影响。

本研究的主要目标是考察ARTIST、TESA和SOUND/SSPIR处理流程在去除EEG信号中的TMS伪影的效果和准确性。本文旨在评估哪种处理流程的整体表现最佳,并分析在使用这些处理流程时可能遇到的问题。这将为执行TMS-EEG实验的研究人员提供有价值的信息,帮助他们了解所使用的处理流程是否适合其数据,进而决定是否需要针对特定情况开发新的预处理方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值