题意:给出一个区间L R 区间内的距离最远和最近的2个素数 并且是相邻的 R-L <= 1000000 但是L和R会很大
思路:一般素数筛选法是拿一个素数 然后它的2倍3倍4倍...都不是 然后这题可以直接从2的L/2倍开始它的L/2+1倍L/2+2倍...都不是素数
首先筛选出一些素数 然后在以这些素数为基础 在L-R上在筛一次因为 R-L <= 1000000 可以左移开一个1百万的数组
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn = 1000010;
typedef __int64 LL;
int vis[maxn];
int p[maxn];
int prime[maxn];
//筛素数
void sieve(int n)
{
int m = sqrt(n+0.5);
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i <= m; i++)
if(!vis[i])
for(int j = i*i; j <= n; j += i)
vis[j] = 1;
}
int get_primes(int n)
{
sieve(n);
int c = 0;
for(int i = 2; i <= n; i++)
if(!vis[i])
prime[c++] = i;
return c;
}
int main()
{
LL L, R;
int c = get_primes(100000);
while(scanf("%I64d %I64d", &L, &R) != EOF)
{
if(L <= 2)
L = 2;
memset(p, 0, sizeof(p));
for(int i = 0; i < c; i++)
{
if(prime[i] > R)
break;
LL t = L / prime[i];
if(t <= 1)
t = 2;
LL j = t*prime[i];
while(j < L)
j += prime[i];
for(; j <= R; j += prime[i])
{
//printf("%d,,", j);
p[j-L] = 1;
}
}
LL ans1 = 999999999, ans2 = 0;
LL x1, y1, x2, y2, x = -1, y = -1;
for(LL i = L; i <= R; i++)
{
if(!p[i-L])
{
//printf("%d\n", i);
x = y;
y = i;
if(x != -1 && y != -1)
{
if(ans1 > y-x)
{
ans1 = y-x;
x1 = x;
y1 = y;
}
if(ans2 < y-x)
{
ans2 = y-x;
x2 = x;
y2 = y;
}
}
}
}
if(x == -1 || y == -1)
{
puts("There are no adjacent primes.");
continue;
}
printf("%I64d,%I64d are closest, %I64d,%I64d are most distant.\n", x1, y1, x2, y2);
}
return 0;
}