【从零开始vnpy量化投资】十四. 参数优化技巧

【从零开始vnpy量化投资】十四. 参数优化技巧

概述

之前我们在使用回测时,都是人工修改参数来查看回测效果,如果想批量执行一些参数,找到其中效果最好的参数,这就需要用到参数优化。vnpy自带的参数优化包含两种类型,一种是暴力破解算法,一种是遗传优化算法。

vnpy内置算法比较

暴力破解算法

暴力破解算法的含义就是针对参数定义域的所有组合,暴力执行回测流程,并获取其中目标指标最大的一个。以双均线两个参数为例,如果短期均线的范围为5-20天,长期均线的范围为10-50天,参数最小间隔是1天的话,这个例子里包含16*41=656种组合。也就是vnpy会执行656次回测,并找到效果最好的那个。

遗传优化算法

遗传算法对定义域空间巨大的优化效果会比较好,但对少量参数的反而不会有任何优化作用。遗传算法的原理是从定义域中随机选取一些个体作为当前的样本,称为一代。对这一代的参数执行回测后,对表现最好的一些个体,通过组合或突变的方式,改变参数的某些指标产生新的一代。这种做法类似基因遗传,所以被叫做遗传优化算法。
遗传算法的迭代次数越多,每次包含的样本越多,则效果越好。这就导致了对于少量参数的数据,遗传算法的运行

### vnpy量化交易入门教程和资源 #### 了解vn.py框架 vn.py是一个开源的量化交易平台,专为金融市场的算法交易设计。该平台支持多种市场数据接口、交易接口,并提供丰富的工具来帮助用户构建自动化交易系统[^1]。 #### Python编程基础 由于vn.py基于Python编写,因此熟悉这门语言至关重要。Python拥有众多用于科学计算的数据处理库如Pandas, NumPy等,这些都极大地方便了交易者进行历史数据分析与回测工作。对于初学者来说,《Python量化交易入门》一书提供了详细的Python编程指导,特别是针对量化交易的应用场景进行了优化说明。 #### 安装环境配置 为了确保vn.py能够正常运行,在安装过程中可能会遇到依赖包版本不兼容的问题。例如,默认安装的NumPy版本可能过低而导致某些功能无法正常使用;此时可以通过指定清华镜像源的方式更新至最新稳定版: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade numpy ``` #### 学习路径建议 - **理论学习**:阅读相关书籍资料,理解基本概念和技术细节; - **实践操作**:跟随官方文档完成几个简单的例子项目; - **案例研究**:深入探讨书中提到的具体策略实现方法(如CTA趋势跟踪策略),并尝试自己动手修改参数观察效果变化; - **社区交流**:加入活跃的技术论坛或QQ群组讨论问题分享经验心得。 #### 实战演练指南 通过实际编码练习可以更好地掌握所学知识。可以从最基础的时间序列分析做起,逐步过渡到更复杂的模型训练环节。比如利用`cta_backtesting_util.py`脚本来进行策略性能评估就是一个很好的起点[^2]: ```python from vnpy.app.cta_strategy.backtesting import BacktestingEngine engine = BacktestingEngine() # 加载策略类... engine.add_strategy(MyStrategyClass, setting_dict) # 设置回测时间范围和其他必要参数... result = engine.run_backtesting() print(result) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔落凡尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值