图像特征描述SIFT、SURF、ORB、HOG、HAAR、LBP特征的原理概述

本文介绍了图像处理中的几种重要特征描述方法:SIFT(尺度不变特征转换)、SURF(加速稳健特征)、ORB(Oriented FAST and Rotated BRIEF)、HOG(方向梯度直方图)、HAAR(Haar特征)和LBP(局部二值模式)。SIFT通过尺度空间极值检测、关键点定位、方向确定和关键点描述实现尺度和旋转不变性。SURF在SIFT基础上进行了优化,简化了计算过程并引入了方向确定的新方法。ORB结合了FAST特征点检测和BRIEF描述子,同时增加了旋转不变性。HOG用于行人检测,通过计算方向梯度直方图得到特征。HAAR特征通常用于人脸识别,利用矩形模板进行特征检测。LBP是一种简单但有效的纹理描述符,有多种改进形式以增强其不变性。
摘要由CSDN通过智能技术生成

SIFT
SIFT尺度不变特征转换,具有选择,尺度不变性。由David Lowe在1999年所发表,2004年完善总结。

owe将SIFT算法分解为如下四步:
1. 尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。(采用不同参数的高斯模板进行不同尺度的模糊,对图像进行下采样进行图像金字塔,同层的上下两层相减得到高斯差分图像进行极值点检测DOG。)
2. 关键点定位:在每个候选的位置上,通过一个拟合精细的模型(三维二次函数)来确定位置和尺度。关键点的选择依据于它们的稳定程度。
3. 方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。旋转不变性,利用梯度的方法求取局部结构的稳定性。
4. 关键点描述(128维):在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。描述子是关键点领域高斯图像梯度统计结果的一种表示,通过对关键点周围图像区域分块,计算块内梯度直方图,生成具有独特性的向量。
参考:http://blog.csdn.net/zddblog/article/details/7521424

S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值