SIFT
SIFT尺度不变特征转换,具有选择,尺度不变性。由David Lowe在1999年所发表,2004年完善总结。
owe将SIFT算法分解为如下四步:
1. 尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。(采用不同参数的高斯模板进行不同尺度的模糊,对图像进行下采样进行图像金字塔,同层的上下两层相减得到高斯差分图像进行极值点检测DOG。)
2. 关键点定位:在每个候选的位置上,通过一个拟合精细的模型(三维二次函数)来确定位置和尺度。关键点的选择依据于它们的稳定程度。
3. 方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。旋转不变性,利用梯度的方法求取局部结构的稳定性。
4. 关键点描述(128维):在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。描述子是关键点领域高斯图像梯度统计结果的一种表示,通过对关键点周围图像区域分块,计算块内梯度直方图,生成具有独特性的向量。
参考:http://blog.csdn.net/zddblog/article/details/7521424
S