ORB特征检测算法学习

完整代码在文章末尾,使用的库是OpenCV3.4.15。代码参考视觉SLAM14讲
目前只是把流程弄明白,对于一些原理和细节理解不到位,日后会不断完善本文章。

ORB的全称是ORiented Brief,采用FAST(features from accelerated segment test)算法来检测特征点。与Brisk,AKAZE类似,ORB也分两部分,即特征点提取和特征点描述。特征提取是由FAST(Features from Accelerated Segment Test)算法发展来的,它基于特征点周围的图像灰度值,检测候选特征点周围一圈的像素值,如果候选点周围领域内有足够多的像素点与该候选点的灰度值差别够大,则认为该候选点为一个特征点。而特征点描述是根据BRIEF(Binary Robust Independent Elementary Features)特征描述算法改进的。
FAST
ORB

ORB是将FAST特征点的检测方法与BRIEF特征描述子结合起来,并在它们原来的基础上做了改进与优化。
ORB算法是为解决BRIEF的缺陷而改进的,主要解决两个缺点:噪声敏感、旋转不变性。

算法解析

准备的两张不同视角的图片
1.jpg
请添加图片描述
2.jpg

请添加图片描述

1、读取图像(灰度图)

  cv::Mat first_image = cv::imread(argv[1], 0);
  cv::Mat second_image = cv::imread(argv[2], 0);

2、使用FAST算法检测出特征点

首先使用FAST算法提取图片的特征点,保存在keypoints变量当中。
cv::KeyPoint在OpenCV当中是表示关键点的结构,其主要参数说明(在本算法当中只需要使用pt参数):

pt:关键点的位置
size:关键点的范围
angle:关键点角度
response:能够给某个关键点更强烈响应的检测器,有时能够被理解为特性实际存在的概率
octave:标示了关键点被找到的层级,总是希望在相同的层级找到对应的关键点
class_id:标示关键点来自于哪一个目标

DescType表示的是vector<unit32_t>,每个元素是32位(BRIEF算法)

  vector<cv::KeyPoint> keypoints1;
  cv::FAST(first_image, keypoints1, 40);
  vector<DescType> descriptor1;
  ComputeORB(first_image, keypoints1, descriptor1);

3、选出描述子

ComputeORB用于计算图像中的 ORB(Oriented FAST and Rotated BRIEF)特征点及其描述子,具体过程为:

输入参数: 
    img: 输入的灰度图像,类型为 cv::Mat。
    keypoints: 存储检测到的关键点的向量。
    descriptors: 存储与每个关键点对应的描述子的向量。
边界检查:
    函数首先定义了一些常量,如 half_patch_size 和 half_boundary。这些值用于确保计算关键点描述子时不会越界。
    对于每个关键点,如果其坐标超出了图像的有效范围(即距离边界小于 half_boundary),则将其视为无效(bad points),并在描述子中添加一个空的描述子。
计算中心矩:
    对于有效的关键点,函数计算其周围区域的第一中心矩 m10 和 m01,这两个值用于后续计算关键点的方向。
计算方向:
    根据 m01 和 m10 的值,计算出关键点的方向(角度),通过归一化得到正弦和余弦值 (sin_theta 和 cos_theta)。
计算描述子:
    函数初始化了一个大小为 8 的描述子向量,每个元素对应 8 个方向。
    在每个方向上,使用 32 个采样点来比较关键点周围的像素值。
    通过旋转采样点坐标以匹配关键点的方向,判断相应的像素值,并根据比较结果生成二进制描述子。
存储描述子:
    将计算得到的描述子添加到 descriptors 向量中。
注:灰度质心法

灰度质心法原理
当我们在图像中选中一个点进行观测(我们可以以水平方向为x轴),此时将图像进行旋转一个角度,观测点跟随图像进行旋转。旋转后的观测点在原坐标系下已经丢失,因此我们想要观测点跟随图像旋转后的坐标。在灰度图中,图像的每个像素被表示为0~255的值,将它看成是此像素的质量(显然每个像素的质量是不同的),我们可以用灰度质心法求出这片区域的质心。
既然对图像进行旋转,必然需要用到二维旋转矩阵:
在这里插入图片描述

//ORB_pattern是自定义的一个256*4的数组,在计算同一张图片的两个坐标点像素时会使用到

void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors) {
    const int half_patch_size = 8;   //相当于半径
    const int half_boundary = 16;
    int bad_points = 0;//FAST检测出的特征点中超出边界范围的点
    //保证所有计算都不会超限
    for(auto &kp: keypoints){
        if(kp.pt.x < half_boundary || kp.pt.y < half_boundary ||
            kp.pt.x >= img.cols - half_boundary || kp.pt.y >= img.rows - half_boundary){
                bad_points++;
                descriptors.push_back({});
                continue;
            }
            //求出m10和m01
            float m01 = 0, m10 = 0;
        for (int dx = -half_patch_size; dx < half_patch_size; ++dx) {
            for (int dy = -half_patch_size; dy < half_patch_size; ++dy) {
                uchar pixel = img.at<uchar>(kp.pt.y + dy, kp.pt.x + dx);
                m10 += dx * pixel;
                m01 += dy * pixel;
            }
        }
        // angle should be arc tan(m01/m10);
        float m_sqrt = sqrt(m01 * m01 + m10 * m10) + 1e-18;
        float sin_theta = m01 / m_sqrt;
        float cos_theta = m10 / m_sqrt;
        
        DescType desc(8,0);
        for (int i=0; i<8; i++){  //corresponding to 8 different directions
            uint32_t d=0;
            for(int k=0; k<32;k++) {
                int idx_pq = i*32 +k;
                cv::Point2f p(ORB_pattern[idx_pq*4], ORB_pattern[idx_pq*4+1]);
                cv::Point2f q(ORB_pattern[idx_pq*4+2], ORB_pattern[idx_pq*4 +3]);
                
                //rotate with theta
                cv::Point2f pp = cv::Point2f(cos_theta*p.x - sin_theta*p.y, sin_theta*p.x + cos_theta* p.y) + kp.pt;
                cv::Point2f qq = cv::Point2f(cos_theta * q.x - sin_theta * q.y, sin_theta * q.x + cos_theta * q.y) + kp.pt;
                //如果pp点的亮度小于qq点的亮度,将d的第k位置为1,最终形成32位的二进制串
                if(img.at<uchar>(pp.y, pp.x) < img.at<uchar>(qq.y, qq.x)){
                    d |= 1 << k;
                }
            }
            desc[i] = d;
        }
        descriptors.push_back(desc);
    }
    cout << "bad/total: " << bad_points << "/" << keypoints.size() <<endl;
}

4、计算匹配的特征点

Dmatch对象保存的是上一步计算出的两个descriptors匹配成功的结果,

vector<cv::DMatch> matches;
BfMatch(descriptor1, descriptor2, matches);
cv::DMatch参数说明:
    queryIdx : 查询点的索引(当前要寻找匹配结果的点在它所在图片上的索引)
    trainIdx : 被查询到的点的索引(存储库中的点的在存储库上的索引)
    distance: 为两个描述子之间的距离
void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
    const int d_max = 40;
    for (size_t i1=0; i1 < desc1.size(); ++i1) { //以descriptor1位基准,按顺序与descriptor2进行匹配
        if(desc1[i1].empty()) continue;
        cv::DMatch m{(int)i1, 0, 256}; //distance初始化为256
        for (size_t i2 = 0; i2 < desc2.size(); ++i2) {
            if (desc2[i2].empty()) continue;
            int distance = 0;
            for (int k = 0; k<8; k++) {
                //calculate the number of 1s in the 32-bit integer passed in(hamming weight)
                distance += _mm_popcnt_u32(desc1[i1][k] ^ desc2[i2][k]);//简单说就是两个32位2进制串中有多少位是相同的
            }
            if(distance < d_max && distance < m.distance) {
                m.distance = distance;
                m.trainIdx = i2;
            }
        }
        if( m.distance < d_max) {
            matches.push_back(m);
        }
    }
}

5、画出匹配的特征图

  cv::Mat image_show;
  cv::drawMatches(first_image, keypoints1, second_image, keypoints2, matches, image_show);
  cv::imshow("matches", image_show);
  //cv::imwrite("matches.png",image_show);
  cv::waitKey(0);

匹配的特征图

完整代码

#include <opencv2/opencv.hpp>
#include <string>
#include <nmmintrin.h>
#include <chrono>

using namespace std;

// 32 bit unsigned int, will have 8, 8x32=256
typedef vector<uint32_t> DescType;


void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors);


void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches);


int main(int argc, char **argv) {
  if (argc != 3) {
    cout << "usage: feature_extraction img1 img2" << endl;
    return 1;
  }
  //-- 读取图像
  cv::Mat first_image = cv::imread(argv[1], 0);
  cv::Mat second_image = cv::imread(argv[2], 0);
  assert(first_image.data != nullptr && second_image.data != nullptr);
  
  //detect FAST keypoints1 using threshold=40
  chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
  vector<cv::KeyPoint> keypoints1;
  cv::FAST(first_image, keypoints1, 40);
  vector<DescType> descriptor1;
  ComputeORB(first_image, keypoints1, descriptor1);
  
  vector<cv::KeyPoint> keypoints2;
  vector<DescType> descriptor2;
  cv::FAST(second_image, keypoints2, 40);
  ComputeORB(second_image, keypoints2, descriptor2);
  chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
  chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
  
  // find matches
  vector<cv::DMatch> matches;
  t1 = chrono::steady_clock::now();
  BfMatch(descriptor1, descriptor2, matches);
  t2 = chrono::steady_clock::now();
  time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
  cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
  cout << "matches: " << matches.size() << endl;
  
  cv::Mat image_show;
  cv::drawMatches(first_image, keypoints1, second_image, keypoints2, matches, image_show);
  cv::imshow("matches", image_show);
  //cv::imwrite("matches.png",image_show);
  cv::waitKey(0);
  
  
}

int ORB_pattern[256 * 4] = {
  8, -3, 9, 5/*mean (0), correlation (0)*/,
  4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
  -11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
  7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
  2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
  1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
  -2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
  -13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
  -13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
  10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
  -13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
  -11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
  7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
  -4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
  -13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
  -9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
  12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
  -3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
  -6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
  11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
  4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
  5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
  3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
  -8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
  -2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
  -13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
  -7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
  -4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
  -10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
  5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
  5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
  1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
  9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
  4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
  2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
  -4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
  -8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
  4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
  0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
  -13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
  -3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
  -6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
  8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
  0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
  7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
  -13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
  10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
  -6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
  10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
  -13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
  -13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
  3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
  5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
  -1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
  3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
  2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
  -13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
  -13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
  -13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
  -7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
  6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
  -9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
  -2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
  -12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
  3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
  -7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
  -3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
  2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
  -11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
  -1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
  5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
  -4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
  -9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
  -12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
  10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
  7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
  -7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
  -4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
  7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
  -7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
  -13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
  -3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
  7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
  -13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
  1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
  2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
  -4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
  -1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
  7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
  1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
  9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
  -1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
  -13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
  7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
  12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
  6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
  5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
  2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
  3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
  2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
  9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
  -8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
  -11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
  1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
  6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
  2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
  6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
  3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
  7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
  -11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
  -10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
  -5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
  -10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
  8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
  4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
  -10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
  4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
  -2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
  -5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
  7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
  -9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
  -5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
  8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
  -9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
  1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
  7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
  -2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
  11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
  -12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
  3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
  5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
  0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
  -9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
  0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
  -1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
  5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
  3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
  -13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
  -5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
  -4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
  6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
  -7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
  -13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
  1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
  4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
  -2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
  2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
  -2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
  4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
  -6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
  -3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
  7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
  4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
  -13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
  7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
  7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
  -7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
  -8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
  -13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
  2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
  10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
  -6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
  8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
  2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
  -11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
  -12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
  -11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
  5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
  -2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
  -1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
  -13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
  -10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
  -3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
  2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
  -9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
  -4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
  -4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
  -6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
  6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
  -13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
  11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
  7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
  -1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
  -4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
  -7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
  -13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
  -7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
  -8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
  -5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
  -13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
  1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
  1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
  9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
  5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
  -1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
  -9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
  -1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
  -13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
  8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
  2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
  7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
  -10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
  -10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
  4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
  3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
  -4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
  5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
  4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
  -9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
  0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
  -12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
  3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
  -10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
  8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
  -8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
  2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
  10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
  6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
  -7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
  -3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
  -1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
  -3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
  -8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
  4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
  2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
  6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
  3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
  11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
  -3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
  4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
  2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
  -10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
  -13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
  -13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
  6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
  0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
  -13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
  -9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
  -13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
  5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
  2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
  -1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
  9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
  11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
  3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
  -1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
  3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
  -13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
  5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
  8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
  7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
  -10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
  7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
  9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
  7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
  -1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};

void ComputeORB(const cv::Mat &img, vector<cv::KeyPoint> &keypoints, vector<DescType> &descriptors) {
    const int half_patch_size = 8;
    const int half_boundary = 16;
    int bad_points = 0;
    for(auto &kp: keypoints){
        if(kp.pt.x < half_boundary || kp.pt.y < half_boundary ||
            kp.pt.x >= img.cols - half_boundary || kp.pt.y >= img.rows - half_boundary){
                bad_points++;
                descriptors.push_back({});
                continue;
            }
            float m01 = 0, m10 = 0;
        for (int dx = -half_patch_size; dx < half_patch_size; ++dx) {
            for (int dy = -half_patch_size; dy < half_patch_size; ++dy) {
                uchar pixel = img.at<uchar>(kp.pt.y + dy, kp.pt.x + dx);
                m10 += dx * pixel;
                m01 += dy * pixel;
            }
        }
        // angle should be arc tan(m01/m10);
        float m_sqrt = sqrt(m01 * m01 + m10 * m10) + 1e-18;
        float sin_theta = m01 / m_sqrt;
        float cos_theta = m10 / m_sqrt;
        
        DescType desc(8,0);
        for (int i=0; i<8; i++){  //corresponding to 8 different directions
            uint32_t d=0;
            for(int k=0; k<32;k++) {
                int idx_pq = i*32 +k;
                cv::Point2f p(ORB_pattern[idx_pq*4], ORB_pattern[idx_pq*4+1]);
                cv::Point2f q(ORB_pattern[idx_pq*4+2], ORB_pattern[idx_pq*4 +3]);
                
                //rotate with theta
                cv::Point2f pp = cv::Point2f(cos_theta*p.x - sin_theta*p.y, sin_theta*p.x + cos_theta* p.y) + kp.pt;
                cv::Point2f qq = cv::Point2f(cos_theta * q.x - sin_theta * q.y, sin_theta * q.x + cos_theta * q.y) + kp.pt;
                if(img.at<uchar>(pp.y, pp.x) < img.at<uchar>(qq.y, qq.x)){
                    d |= 1 << k;
                }
            }
            desc[i] = d;
        }
        descriptors.push_back(desc);
        
    }
    cout << "bad/total: " << bad_points << "/" << keypoints.size() <<endl;
}

void BfMatch(const vector<DescType> &desc1, const vector<DescType> &desc2, vector<cv::DMatch> &matches) {
    const int d_max = 40;
    for (size_t i1=0; i1 < desc1.size(); ++i1) {
        if(desc1[i1].empty()) continue;
        cv::DMatch m{(int)i1, 0, 256};
        for (size_t i2 = 0; i2 < desc2.size(); ++i2) {
            if (desc2[i2].empty()) continue;
            int distance = 0;
            for (int k = 0; k<8; k++) {
                //calculate the number of 1s in the 32-bit integer passed in(hamming weight)
                distance += _mm_popcnt_u32(desc1[i1][k] ^ desc2[i2][k]);
            }
            if(distance < d_max && distance < m.distance) {
                m.distance = distance;
                m.trainIdx = i2;
            }
        }
        if( m.distance < d_max) {
            matches.push_back(m);
        }
    }
}

这里是一个Python代码示例,使用ORB检测算法和BF匹配算法,找出一张照片和文件夹里面的照片相匹配的图片,并输出其图像名称: ```python import cv2 import os # 初始化ORB检测器和匹配器 orb = cv2.ORB_create() bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # 加载待匹配的图片 img1 = cv2.imread('待匹配的图片.jpg', 0) # 提取待匹配图片的特征点和特征描述符 kp1, des1 = orb.detectAndCompute(img1, None) # 遍历指定文件夹里的所有图片 for filename in os.listdir('指定文件夹的路径'): # 读取文件夹中的图片 img2 = cv2.imread(os.path.join('指定文件夹的路径', filename), 0) # 提取当前图片的特征点和特征描述符 kp2, des2 = orb.detectAndCompute(img2, None) # 使用BF匹配器进行特征匹配 matches = bf.match(des1, des2) # 对匹配结果按照距离进行排序 matches = sorted(matches, key=lambda x: x.distance) # 判断是否找到了匹配的图片 if len(matches) > 0: # 输出匹配的图片名称 print('匹配成功的图片名称:', filename) # 绘制匹配的特征点对 img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=2) # 显示匹配的结果 cv2.imshow('Matched image', img3) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上述代码中,我们首先使用ORB检测算法和BF匹配算法对待匹配的图片进行特征提取和匹配。然后,遍历指定文件夹中的所有图片,对每张图片也进行特征提取和匹配。如果找到了匹配的图片,则输出其图像名称。最后,使用OpenCV的`drawMatches`函数绘制匹配的特征点对,并显示匹配的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值