1.理论推演
设正弦信号为:
x
(
t
)
=
sin
(
2
π
f
t
+
φ
0
)
x(t)=\sin (2\pi ft+\varphi_0)
x(t)=sin(2πft+φ0)
线性调频信号中,其瞬时频率随时间线性变化,
f
(
t
)
=
c
t
+
f
0
f(t) = ct+f_0
f(t)=ct+f0
c为线性调频率
对于线性调频带宽为B时
c
=
(
f
0
+
B
)
−
f
0
T
=
B
T
c=\frac {(f_0+B)-f_0} {T}=\frac {B}{T}
c=T(f0+B)−f0=TB
震荡信号的相位对应的时域函数是频率函数的积分,离散形式为:
ϕ
(
n
+
1
)
=
ϕ
(
n
)
+
2
π
f
(
t
)
/
T
s
\phi(n+1)=\phi(n)+2\pi f(t)/T_s
ϕ(n+1)=ϕ(n)+2πf(t)/Ts
积分形式:
f
t
+
φ
0
=
φ
0
+
2
π
∫
0
t
f
(
τ
)
d
τ
=
φ
0
+
2
π
(
c
2
t
2
+
f
0
t
)
ft+\varphi_0=\varphi_0+2\pi\int^t_0 f(\tau)d\tau=\varphi_0+2\pi(\frac c 2t^2+f_0t)
ft+φ0=φ0+2π∫0tf(τ)dτ=φ0+2π(2ct2+f0t)
其复信号形式为:
x
(
t
)
=
e
j
(
2
π
f
0
t
+
π
c
t
2
)
=
cos
(
2
π
f
0
t
+
π
c
t
2
)
+
j
sin
(
2
π
f
0
t
+
π
c
t
2
)
x(t)=e^{j(2\pi f_0t +\pi ct^2)}=\cos(2\pi f_0t +\pi ct^2)+j\sin (2\pi f_0t +\pi ct^2)
x(t)=ej(2πf0t+πct2)=cos(2πf0t+πct2)+jsin(2πf0t+πct2)
2.Matlab仿真
clc;close all;clear all;
fs= 100e6;%采样频率100Mhz
t = 0:1/fs:(T-1/fs); % 采样点
n = length(t); % 采样点数
c_amp = 1;%载波幅度
fre0 = 10e6;%载波频率10Mhz
I_amp = 0;%信号直流分量幅度
%c_wave = c_amp*exp(1i*2*pi*fre0*t)+I_amp;
B0 = 10e6;%10MHz
T0 = 10e-6;%10us
k0 = B0/T0;
c_wave = exp(1i*(2*pi*fre0*t+pi*k0*t.^2));
c_wave1 = sin((2*pi*fre0*t+pi*k0*t.^2));
plot(t(1:1000),c_wave1(1:1000));
plot(t(1:1000),imag(c_wave(1:1000)));
仿真结果:
图1图2相同,不再重复