【随机信号处理笔记】 Chapter3 随机信号分析

声明

本系列笔记为随机信号处理课程笔记,旨在帮助大伙复习使用,PPT截取部分为课堂PPT,本人能力不强,如果大伙发现了笔记中的错误,还请不吝赐教,我会及时修正

3.1 随机过程

随机变量:表征固定时刻下随机样本的分布情况,相当于固定时刻的列向量。

随机过程:表征全部时刻随机变量随时间的变化,相当于矩阵,纵轴为不同样本的采样器,横轴为时间。随机过程是由随机变量所描述的。

随机过程的样本函数:表示全部时刻某一样本随时间的变化,相当于行向量。

随机过程

在随机过程引入时间t之后,重新定义随机过程的函数:

一维概率分布函数: F ( x , t ) = P ( X ( t ) ≤ x ) F(x,t)=P(X(t)\le x) F(x,t)=P(X(t)x)

一维概率密度函数: p ( x , t ) = ∂ F ( x , t ) ∂ x p(x,t)=\frac {\partial F(x,t)}{\partial x} p(x,t)=xF(x,t)

  • 随机过程中的概率函数、统计特性随时间变化
  • 不同时刻之间并非相互独立

多维联合概率函数相似,不再赘述

数字特征

数学期望:一阶原点矩 E [ X ( t ) ] = m X ( t ) = ∫ − ∞ ∞ x p ( x , t )   d x E[X(t)]=m_X(t)=\int^\infty_{-\infty}xp(x,t)\,dx E[X(t)]=mX(t)=xp(x,t)dx

方差: E [ X ( t ) − m X ( t ) ] 2 = D [ X ( t ) ] E{[X(t)-m_X(t)]^2}=D[X(t)] E[X(t)mX(t)]2=D[X(t)]

自相关:二阶原点矩 R x ( t 1 , t 2 ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 p ( x 1 , x 2 ; t 1 , t 2 )   d x 1 d x 2 R_x(t_1,t_2)=\int^\infty_{-\infty}\int ^\infty_{-\infty}x_1x_2p(x_1,x_2;t_1,t_2)\,dx_1dx_2 Rx(t1,t2)=x1x2p(x1,x2;t1,t2)dx1dx2

自协方差:二阶中心矩 C X ( t 1 , t 2 ) = E [ [ X ( t 1 ) − m X ( t 1 ) ] [ X ( t 2 ) − m X ( t 2 ) ] ] = R X ( t 1 , t 2 ) − m X ( t 1 ) m X ( t 2 ) C_X(t_1,t_2)=E[[X(t_1)-m_X(t_1)][X(t_2)-m_X(t_2)]]=R_X(t_1,t_2)-m_X(t_1)m_X(t_2) CX(t1,t2)=E[[X(t1)mX(t1)][X(t2)mX(t2)]]=RX(t1,t2)mX(t1)mX(t2)

  • p ( x 1 , x 2 ; t 1 , t 2 ) = p ( x 1 ; t 1 ) p ( x 2 ; t 2 ) p(x_1,x_2;t_1,t_2)=p(x_1;t_1)p(x_2;t_2) p(x1,x2;t1,t2)=p(x1;t1)p(x2;t2)则称随机过程在两时刻统计独立
  • R X ( t 1 , t 2 ) = 0 R_X(t_1,t_2)=0 RX(t1,t2)=0则称随机过程在两时刻相互正交
  • C X ( t 1 , t 2 ) = 0 C_X(t_1,t_2)=0 CX(t1,t2)=0则称随机过程在两时刻互不相关

3.2 平稳随机过程

定义:统计特性不随时间的变化而变化

狭义平稳随机过程:

非时变: F ( X , t ) 、 m X 、 σ X F(X,t)、m_X、\sigma_X F(X,t)mXσX

仅与时间间隔有关: F 2 ( x 1 , x 2 ; t 1 , t 2 ) 、 p 2 ( x 1 , x 2 ; t 1 , t 2 ) 、 R X ( t 1 , t 2 ) F_2(x_1,x_2;t_1,t_2)、p_2(x_1,x_2;t_1,t_2)、R_X(t_1,t_2) F2(x1,x2;t1,t2)p2(x1,x2;t1,t2)RX(t1,t2)

广义平稳随机过程:

  • 自相关函数仅与时间间隔有关
  • 均值不变

广义平稳与狭义平稳的关系:仅X(t)为高斯随机工程时,宽平稳与严平稳相同

平稳过程特征:

  • 循环平稳:具有周期性的平稳随机过程的自相关函数也具有周期性
  • 彼此统计独立的平稳随机过程的乘积也是平稳随机过程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

各态历经过程

定义:单样本函数已经经历过随机过程中所有可能的状态

时间均值: ⟨ x ( t ) ⟩ = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) d t \langle x(t)\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) d t x(t)=limTT10Tx(t)dt

时间自相关: ⟨ R x ( τ ) ⟩ = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) d t \left\langle R_{x}(\tau)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t+\tau) d t Rx(τ)=limTT10Tx(t)x(t+τ)dt

时间方差: ⟨ σ x 2 ⟩ = lim ⁡ T → ∞ 1 T ∫ 0 T [ x ( t ) − ⟨ x ( t ) ⟩ ] 2 d t \left\langle\sigma_{x}^{2}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}[x(t)-\langle x(t)\rangle]^{2} d t σx2=limTT10T[x(t)x(t)]2dt

各态历经性:

  • 为广义平稳随机过程
  • 均值与时间均值依概率相等: m X = E [ X ( t ) ] = P lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) d t = ⟨ x ( t ) ⟩ m_{X}=E[X(t)] \stackrel{P}{=} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) d t=\langle x(t)\rangle mX=E[X(t)]=PlimTT10Tx(t)dt=x(t)
  • 自相关与时间自相关依概率相等: R X ( τ ) = E [ X ( t ) X ( t + τ ) ] = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) d t = ⟨ R x ( τ ) ⟩ R_{X}(\tau)=E[X(t) X(t+\tau)]=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t+\tau) d t=\left\langle R_{x}(\tau)\right\rangle RX(τ)=E[X(t)X(t+τ)]=limTT10Tx(t)x(t+τ)dt=Rx(τ)

各态历经一定平稳,而平稳不一定各态历经

自相关函数

定义:

R X ( τ ) = E [ X ( t ) X ( t + τ ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x ( t ) x ( t + τ ) p 2 ( x 1 , x 2 ; τ ) d x 1 d x 2 R_{X}(\tau)=E[X(t) X(t+\tau)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) x(t+\tau) p_{2}\left(x_{1}, x_{2} ; \tau\right) d x_{1} d x_{2} RX(τ)=E[X(t)X(t+τ)]=x(t)x(t+τ)p2(x1,x2;τ)dx1dx2

性质:

  • 0点处为过程总平均功率 R X ( 0 ) = E [ X 2 ( t ) ] ≥ 0 R_{X}(0)=E\left[X^{2}(t)\right] \geq 0 RX(0)=E[X2(t)]0
  • 偶函数
  • 在0点处取得最大
  • 对于非周期平稳过程,无穷间隔时刻时统计独立,在无穷远处有 lim ⁡ ∣ τ ∣ → ∞ R X ( τ ) = R X ( ∞ ) = m X 2 \lim _{|\tau| \rightarrow \infty} R_{X}(\tau)=R_{X}(\infty)=m_{X}^{2} limτRX(τ)=RX()=mX2
  • 均方值=方差+均值平方
  • 平均功率=误差平均功率+均值功率
  • R X ( 0 ) = C X ( 0 ) + m X 2 = σ X 2 + R X ( ∞ ) R_{X}(0)=C_{X}(0)+m_{X}^{2}=\sigma_{X}^{2}+R_{X}(\infty) RX(0)=CX(0)+mX2=σX2+RX()
  • 若平稳过程周期,则自相关周期
    在这里插入图片描述

维纳-辛钦定理:

对于平稳随机过程,自相关与功率谱是一对傅里叶变换
在这里插入图片描述

相关系数与相关时间

相关系数:又称归一化自相关函数 ∣ γ X ( τ ) ∣ = R X ( τ ) − R X ( ∞ ) σ X 2 = C X ( τ ) σ X 2 \left|\gamma_{X}(\tau)\right|=\frac{R_{X}(\tau)-R_{X}(\infty)}{\sigma_{X}^{2}}=\frac{C_{X}(\tau)}{\sigma_{X}^{2}} γX(τ)=σX2RX(τ)RX()=σX2CX(τ)

相关时间:平稳随机过程的相关系数降至5%的时间间隔

相关时间越小,不同时刻关联程度低,变化剧烈,频率高

相关时间越大,不同时刻关联程度高,变化缓慢,频率低

功率谱

功率谱密度表征非周期能量无限但平均功率有限的信号的平均功率在频谱上的分布,不包含任何相位信息

3.3 线性系统

线性系统的基本性质

可加性: x 1 ( t ) + x 2 ( t ) → y 1 ( t ) + y 2 ( t ) x_{1}(t)+x_{2}(t) \rightarrow y_{1}(t)+y_{2}(t) x1(t)+x2(t)y1(t)+y2(t)

比例性: a x ( t ) → a y ( t ) , a  为常数  a x(t) \rightarrow a y(t), a \text { 为常数 } ax(t)ay(t),a 为常数 

时不变性: ∑ k = 1 N a k x k ( t − t 0 ) → ∑ k = 1 N a k y k ( t − t 0 ) \sum_{k=1}^{N} a_{k} x_{k}\left(t-t_{0}\right) \rightarrow \sum_{k=1}^{N} a_{k} y_{k}\left(t-t_{0}\right) k=1Nakxk(tt0)k=1Nakyk(tt0)

系统响应的平稳性

对于LTI系统,若输入严格/广义平稳,则输出也是严格/广义平稳的

均值: E [ Y ( t ) ] = m X H ( 0 ) = m Y E[Y(t)]=m_{X} H(0)=m_{Y} E[Y(t)]=mXH(0)=mY表示平稳随机过程的均值乘直流分量放大倍数

自相关函数:自相关函数与系统冲击响应的双重卷积 R Y ( t 1 , t 2 ) = ∫ − ∞ ∞ ∫ − ∞ ∞ R X ( τ − τ 2 + τ 1 ) h ( τ 1 ) h ( τ 2 ) d τ 1 d τ 2 = R X ( τ ) ⊗ h ( τ ) ⊗ h ( − τ ) \begin{aligned}R_{Y}\left(t_{1}, t_{2}\right) &=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{X}\left(\tau-\tau_{2}+\tau_{1}\right) h\left(\tau_{1}\right) h\left(\tau_{2}\right) d \tau_{1} d \tau_{2} \\&=R_{X}(\tau) \otimes h(\tau) \otimes h(-\tau)\end{aligned} RY(t1,t2)=RX(ττ2+τ1)h(τ1)h(τ2)dτ1dτ2=RX(τ)h(τ)h(τ)

系统响应的各态历经性

对于LTI系统,若输入为各态历经过程,则输出也是各态历经过程

系统响应的频域分析

LTI系统对于功率谱的传递作用: ∣ H ( ω ) ∣ 2 = G Y ( ω ) G X ( ω ) |H(\omega)|^{2}=\frac{G_{Y}(\omega)}{G_{X}(\omega)} H(ω)2=GX(ω)GY(ω)

表示信号功率的传输仅受系统幅频响应特性的影响

特殊的,对于白噪声 G X ( ω ) = N 0 2 G_{X}(\omega)=\frac{N_{0}}{2} GX(ω)=2N0 G Y ( ω ) = N 0 2 ∣ H ( ω ) ∣ 2 G_{Y}(\omega)=\frac{N_{0}}{2}|H(\omega)|^{2} GY(ω)=2N0H(ω)2

白噪声通过线性系统

白噪声的功率谱密度: G X ( ω ) = N 0 2 G_{X}(\omega)=\frac{N_{0}}{2} GX(ω)=2N0

噪声带宽:用一个限带的矩形系统代替实际系统对噪声做分析,这两个系统对相同功率白噪声的响应平均功率相同,且在频带中心响应相同。限带矩形系统的带宽 Δ ω e \Delta\omega_e Δωe称为噪声带宽。

噪声带宽与3dB带宽的关系:对于不同的电路情形,有着不同的对应关系,对于雷达接收机这种电路级数较高的电路,近似认为两者相等。

若噪声服从高斯分布,经过LTI系统后,限带噪声仍服从高斯分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值