图像bayer格式介绍以及bayer插值原理CFA

图像bayer格式介绍

  bayer格式图片是伊士曼·柯达公司科学家Bryce Bayer发明的,Bryce Bayer所发明的拜耳阵列被广泛运用数字图像。

  对于彩色图像,需要采集多种最基本的颜色,如rgb三种颜色,最简单的方法就是用滤镜的方法,红色的滤镜透过红色的波长,绿色的滤镜透过绿色的波长,蓝色的滤镜透过蓝色的波长。如果要采集rgb三个基本色,则需要三块滤镜,这样价格昂贵,且不好制造,因为三块滤镜都必须保证每一个像素点都对齐。当用bayer格式的时候,很好的解决了这个问题。bayer 格式图片在一块滤镜上设置的不同的颜色,通过分析人眼对颜色的感知发现,人眼对绿色比较敏感,所以一般bayer格式的图片绿色格式的像素是是rg像素的和。

  另外,Bayer格式是相机内部的原始图片一般后缀名为.raw。很多软件都可以查看比如PS。我们相机拍照下来存储在存储卡上的.jpeg或其它格式的图片都是从.raw格式转化过来的。如下图,为bayer色彩滤波阵列,由一半的G1/4R1/4B组成。

                      

2 bayer格式图像传感器硬件

  图像传感器的结构如下所示,每一个感光像素之间都有金属隔离层,光纤通过显微镜头,在色彩滤波器过滤之后,投射到相应的漏洞式硅的感光元件上。  

           

  当Image Sensor往外逐行输出数据时,像素的序列为GRGRGR.../BGBGBG...(顺序RGB)。这样阵列的Sensor设计,使得RGB传感器减少到了全色传感器的1/3,如下所示。

                        

3 bayer格式插值红蓝算法实现

  每一个像素仅仅包括了光谱的一部分,必须通过插值来实现每个像素的RGB值。为了从Bayer格式得到每个像素的RGB格式,我们需要通过插值填补缺失的2个色彩。插值的方法有很多(包括领域、线性、3*3等),速度与质量权衡,最好的线性插值补偿算法。其中算法如下: 

  RB通过线性领域插值,但这有四种不同的分布,如下图所示: 

                   

                                       (a)                                   (b)

                   

                         (c)                                   (d)

  在(a)与(b)中,RB分别取邻域的平均值。

  在(c)与(d)中,取领域的4BR的均值作为中间像素的B值。 

4 bayer格式插值绿算法实现

             

                          (c)                                                        (d)

  由于人眼对绿光反应最敏感,对紫光和红光则反应较弱,因此为了达到更好的画质,需要对G特殊照顾。在上述(c)与(d)中,扩展开来就是上图的(e)与(f)中间像素G的取值,者也有一定的算法要求,不同的算法效果上会有差异。经过相关的研究,

  (e)中间像素G值的算法如下: 

                   

  (f)中间像素G值的算法如下:

                         

  CMOS摄像头这部分转换是在内部用ADC或者ISP完成的,生产商为了降低成本必然会使得图像失真。当然用外部处理器来实现转换,如果处理器的速度足够NB,能够胜任像素的操作,用上面的算法来进行转换,皆大欢喜。不过上述算法将直接成倍提高了算法的复杂度,速度上将会有所限制。因此为了速度的提成,可以直接通过来4领域G取均值来中间像素的G值,将会降低一倍的速率,而在性能上差之甚微,算法如下: 

                   

  如果能够通过损失图像的额质量,来达到更快的速度,还可以取G1G2的均值来实现,但是这样的做法会导致边沿以及跳变部分的失真。

  • 5
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是一个简单的 C# Bayer 格式插值算法的实现代码: ```csharp public static void BayerInterpolation(byte[] input, int width, int height, ref byte[] output) { int outputWidth = width * 3; int outputHeight = height * 3; output = new byte[outputWidth * outputHeight]; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int outputX = x * 3; int outputY = y * 3; int inputIndex = y * width + x; int outputIndex = outputY * outputWidth + outputX; // Red pixel output[outputIndex] = input[inputIndex]; if (x < width - 1) { output[outputIndex + 3] = (byte)((input[inputIndex] + input[inputIndex + 1]) / 2); } if (y < height - 1) { output[outputIndex + outputWidth * 3] = (byte)((input[inputIndex] + input[inputIndex + width]) / 2); } if (x < width - 1 && y < height - 1) { output[outputIndex + outputWidth * 3 + 3] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + width] + input[inputIndex + width + 1]) / 4); } // Green pixel if (y % 2 == 0) { if (x % 2 == 0) { output[outputIndex + 1] = input[inputIndex + 1]; if (x < width - 1) { output[outputIndex + 2] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + 2]) / 3); } if (y < height - 1) { output[outputIndex + outputWidth * 3 + 1] = (byte)((input[inputIndex] + input[inputIndex + width] + input[inputIndex + width + 1]) / 3); } if (x < width - 1 && y < height - 1) { output[outputIndex + outputWidth * 3 + 4] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + width] + input[inputIndex + width + 1] + input[inputIndex + 2] + input[inputIndex + width + 2]) / 6); } } else { output[outputIndex + 2] = input[inputIndex + 1]; if (y < height - 1) { output[outputIndex + outputWidth * 3 + 1] = (byte)((input[inputIndex] + input[inputIndex + width] + input[inputIndex + width + 1]) / 3); } if (x < width - 1 && y < height - 1) { output[outputIndex + outputWidth * 3 + 2] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + width] + input[inputIndex + width + 1] + input[inputIndex + width * 2] + input[inputIndex + width * 2 + 1]) / 6); } } } else { if (x % 2 == 0) { output[outputIndex + outputWidth] = input[inputIndex + 1]; if (x < width - 1 && y < height - 1) { output[outputIndex + outputWidth * 2 + 3] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + width] + input[inputIndex + width + 1] + input[inputIndex + width * 2] + input[inputIndex + width * 2 + 1]) / 6); } } else { output[outputIndex + outputWidth + 2] = input[inputIndex + 1]; if (x < width - 1) { output[outputIndex + outputWidth + 1] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + 2]) / 3); } if (y < height - 1) { output[outputIndex + outputWidth * 2 + 2] = (byte)((input[inputIndex] + input[inputIndex + width] + input[inputIndex + width + 1]) / 3); } if (x < width - 1 && y < height - 1) { output[outputIndex + outputWidth * 2 + 4] = (byte)((input[inputIndex] + input[inputIndex + 1] + input[inputIndex + width] + input[inputIndex + width + 1] + input[inputIndex + 2] + input[inputIndex + width + 2]) / 6); } } } } } } ``` 这个算法假定输入图像Bayer 格式的,输出图像是 RGB 格式的。在这个算法中,我们首先定义了输出图像的大小,并初始化了一个输出数组。 接下来,我们使用两个嵌套的循环遍历输入图像的每一个像素。我们计算出每个像素在输出图像中对应的位置,并计算出它在输出数组中的索引。对于每个像素,我们执行以下步骤: 1. 对于红色像素,我们将它的值直接复制到输出图像中,并使用相邻的像素进行插值以得到其他颜色通道的值。 2. 对于绿色像素,我们需要根据它周围的像素值进行插值。具体的插值方式取决于它在 Bayer 格式中的位置。 3. 对于蓝色像素,我们需要根据它周围的像素值进行插值。具体的插值方式取决于它在 Bayer 格式中的位置。 最后,我们返回输出数组,其中包含了经过插值处理后的 RGB 图像
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值