人脸处理 MarkUp

import cv2
import numpy as np

class MFaceMakeup():
    """MobileFace makeup.
    """ 
    def __init__(self, **kwargs):
        super(MobileFaceMakeup, self).__init__(**kwargs)

    def face_whiten(self, im_bgr, whiten_rate=0.15):
        """Face whitening.
        Parameters
        ----------
        im_bgr: mat 
            The Mat data format of reading from the original image using opencv.
        whiten_rate: float, default is 0.15
            The face whitening rate.
        Returns
        -------
        type: mat
            The result of face whitening.
        """  
        im_hsv = cv2.cvtColor(im_bgr, cv2.COLOR_BGR2HSV)
        im_hsv[:,:,-1] = np.minimum(im_hsv[:,:,-1] * (1 + whiten_rate), 255).astype('uint8')
        im_whiten = cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR)
        return im_whiten

    def face_smooth(self, im_bgr, smooth_rate=0.7, bi_ksize=15, sigma=100, ga_ksize=3):
        """Face smoothing.
        Parameters
        ----------
        im_bgr: mat 
            The Mat data format of reading from the original image using opencv.
        smooth_rate: float, default is 0.7.
            The face smoothing rate.
        bi_ksize: int, default is 15.
            The kernel size of bilateral filter.
        sigma: int, default is 100.
            The value of sigmaColor and sigmaSpace for bilateral filter.
        ga_ksize: int, default is 3.
            The kernel size of gaussian blur filter.
        Returns
        -------
        type: mat
            The result of face smoothing.
        """
        im_bi = cv2.bilateralFilter(im_bgr, bi_ksize, sigma, sigma)
        im_ga = cv2.GaussianBlur(im_bi, (ga_ksize, ga_ksize), 0, 0)
        im_smooth = np.minimum(smooth_rate * im_ga + (1 - smooth_rate) * im_bgr, 255).astype('uint8')
        return im_smooth

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NineDays66

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值