阶乘和(信息学奥赛一本通-T1173)

本文介绍了一种使用高精度算法来计算从1到n的阶乘之和的方法,并提供了一个C++实现示例。该算法适用于n值较大时(如n≤50)的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

用高精度计算出S=1!+2!+3!+…+n!(n≤50),其中“!”表示阶乘,例如:5!=5×4×3×2×1。

输入正整数n,输出计算结果S。

【输入】

一个正整数n。

【输出】

计算结果S。

【输入样例】

5

【输出样例】

153

【源程序】

#include<iostream>
#include<cstring>
using namespace std;
int a[500],sum[500];
void mul(int x)//高精乘
{
    int i;
    for(i=1;i<=a[0];i++)
        a[i]*=x;
    for(i=1;i<=a[0];i++)
    {
        a[i+1]+=a[i]/10;
        a[i]%=10;
    }

    i=a[0];
    while(a[i+1]>0)
        i++;

    a[0]=i;
    i=a[0];
    while(a[i]>10)
    {
        a[i+1]+=a[i]/10;
        a[i]%=10;
        i++;
    }
    a[0]=i;
}
void add()//高精加
{
    int i;
    if(sum[0]>a[0])
        sum[0]=sum[0];
    else
        sum[0]=a[0];
    for(i=1;i<=sum[0];i++)
    {
        sum[i]+=a[i];
        sum[i+1]+=sum[i]/10;
        sum[i]%=10;
    }
    if(sum[sum[0]+1]>0)
        sum[0]+=1;
}
int main()
{
    int n;
    int i;

    cin>>n;
    a[0]=1;a[1]=1;sum[0]=1;sum[1]=0;
    for(i=1;i<=n;i++)
    {
        mul(i);//计算阶乘
        add();//计算阶乘和
    }
    for(i=sum[0];i>=1;i--)
        cout<<sum[i];
    cout<<endl;
    return 0;
}

 

### 关于信息学奥赛一本 1092 求阶乘 #### 题目描述 给定正整数 \( n \),计算并输出 \( S=1!+2!+\cdots+n! \)[^1]。 #### 解法思路 此问题的核心在于高精度计算。由于阶乘增长速度极快,即使是相对较小的 \( n \),其阶乘也会变得非常大,无法过常规的数据类型存储。因此,在实现时需采用数组来模拟多位数的加法与乘法操作[^2]。 对于每一个新的项 \( i! \),可以基于前一项 \( (i-1)! \) 来构建当前项的结果,并将其累加到总中去。具体来说: - 初始化一个用于保存最终结果的大整数表示形式(常是一个列表),以及另一个临时变量用来保存每次新产生的阶乘值。 - 对于每一层循环中的 `i` 值,更新该临时变量以反映最新的阶乘值;接着将这个最新得到的阶乘加入到之前累积起来的结果里。 - 特别注意的是当处理每一位上的相加时可能会遇到进位的情况,所以要确保正确处理这些细节以便获得准确的答案。 下面是 Python 实现的例子: ```python def factorial_sum(n): result = [0]*1000 # 存储最后结果, 初始为全零 temp = [1] # 当前正在计算的阶乘初值设为1!, 即只有一位'1' for i in range(1, n + 1): carry = 0 # 进位初始化 # 更新temp至i! for j in range(len(temp)): product = temp[j] * i + carry temp[j] = product % 10 carry = product // 10 while carry != 0: temp.append(carry % 10) carry //= 10 # 将i! 加入result add_carry = 0 min_length = min(len(result), len(temp)) for k in range(min_length): sum_val = result[k] + temp[k] + add_carry result[k] = sum_val % 10 add_carry = sum_val // 10 if add_carry != 0 or len(temp) > len(result): diff_len = abs(len(result)-len(temp)) - int(add_carry==0) extra_digits = ([add_carry]+[0]*diff_len)[:max(diff_len, 0)+int(add_carry!=0)] result[min_length:min_length+len(extra_digits)] = extra_digits return ''.join(map(str, reversed([x for x in result if not(x == 0 and all(y == 0 for y in result[result.index(x):]))]))) ``` 这段代码实现了上述提到的方法论,能够有效地解决这个问题。需要注意的是这里为了简化逻辑,直接用了Python内置的大数支持特性作为辅助工具来进行验证而不是完全依赖手工实现的大数算法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值