奇怪的电梯(洛谷-P1135)

本文介绍了一道关于电梯路径寻找的算法题目,该题目要求在特定的楼层布局中找到从A楼到B楼所需的最少按键次数。通过使用动态规划的方法进行求解,并提供了一个完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 i 层楼 (1≤i≤N) 上有一个数字 Ki​(0≤Ki​≤N) 。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3,3,1,2,5 代表了 Ki​(K1​=3,K2​=3,…) ,从 1 楼开始。在 1 楼,按“上”可以到 4 楼,按“下”是不起作用的,因为没有 −2 楼。那么,从 A 楼到 B 楼至少要按几次按钮呢?

输入输出格式

输入格式:

共二行。

第一行为 3 个用空格隔开的正整数,表示 N,A,B(1≤N≤200, 1≤A,B≤N)。

第二行为 N 个用空格隔开的非负整数,表示 Ki​ 。

输出格式:

一行,即最少按键次数,若无法到达,则输出 -1 。

输入输出样例

输入样例#1:

5 1 5
3 3 1 2 5

输出样例#1:

3

源代码

#include<iostream>
using namespace std;
int main()
{
    int dp[205]={0};
    int n,a,b;
    int k[205];
    int i;
    bool flag=true;

    cin>>n>>a>>b;
    for(i=1;i<=n;i++)
        cin>>k[i];
        
    dp[a]=1;//将a层电梯初值设为1
    while(flag)//至少循环一次
    {
        flag=false;
        for(i=1;i<=n;i++)
        {
            if(dp[i]>0)//保证每次从a层开始
            {
                if(i-k[i]>0)//保证能下降
                {
                    if(dp[i-k[i]]==0||dp[i-k[i]]>dp[i]+1)
                    {
                        dp[i-k[i]]=dp[i]+1;//下降后次数=下降前次数+1
                        flag=true;//满足条件继续循环
                    }
                }
                if(i+k[i]<=n)//保证不会超出最大楼层
                {
                    if(dp[i+k[i]]==0||dp[i+k[i]]>dp[i]+1)
                    {						
                        dp[i+k[i]]=dp[i]+1;//上升后次数=上升前次数+1
                        flag=true;//满足条件继续循环
                    }
                }
            }
        }
    }
    cout<<dp[b]-1<<endl;

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值