题目描述
呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 i 层楼 (1≤i≤N) 上有一个数字 Ki(0≤Ki≤N) 。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3,3,1,2,5 代表了 Ki(K1=3,K2=3,…) ,从 1 楼开始。在 1 楼,按“上”可以到 4 楼,按“下”是不起作用的,因为没有 −2 楼。那么,从 A 楼到 B 楼至少要按几次按钮呢?
输入输出格式
输入格式:
共二行。
第一行为 3 个用空格隔开的正整数,表示 N,A,B(1≤N≤200, 1≤A,B≤N)。
第二行为 N 个用空格隔开的非负整数,表示 Ki 。
输出格式:
一行,即最少按键次数,若无法到达,则输出 -1 。
输入输出样例
输入样例#1:
5 1 5
3 3 1 2 5输出样例#1:
3
源代码
#include<iostream>
using namespace std;
int main()
{
int dp[205]={0};
int n,a,b;
int k[205];
int i;
bool flag=true;
cin>>n>>a>>b;
for(i=1;i<=n;i++)
cin>>k[i];
dp[a]=1;//将a层电梯初值设为1
while(flag)//至少循环一次
{
flag=false;
for(i=1;i<=n;i++)
{
if(dp[i]>0)//保证每次从a层开始
{
if(i-k[i]>0)//保证能下降
{
if(dp[i-k[i]]==0||dp[i-k[i]]>dp[i]+1)
{
dp[i-k[i]]=dp[i]+1;//下降后次数=下降前次数+1
flag=true;//满足条件继续循环
}
}
if(i+k[i]<=n)//保证不会超出最大楼层
{
if(dp[i+k[i]]==0||dp[i+k[i]]>dp[i]+1)
{
dp[i+k[i]]=dp[i]+1;//上升后次数=上升前次数+1
flag=true;//满足条件继续循环
}
}
}
}
}
cout<<dp[b]-1<<endl;
return 0;
}