My Brute(HDU-3315)

本文介绍了一个游戏情侣在情人节前的竞争故事,starvae和xingxing为了赢得seaco的芳心,进行了一场类似“My Brute”的游戏比赛。比赛由n轮构成,每轮中,starvae的勇士Si将对阵xingxing的勇士Xi,胜利者将获得分数。文章探讨了如何通过调整勇士的出场顺序来最大化starvae的得分,并保持与原始顺序的最大相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

Seaco is a beautiful girl and likes play a game called “My Brute”. Before Valentine’s Day, starvae and xingxing ask seaco if she wants to spend the Valentine’s Day with them, but seaco only can spend it with one of them. It’s hard to choose from the two excellent boys. So there will be a competition between starvae and xingxing. The competition is like the game “My Brute”.

Now starvae have n brutes named from S1 to Sn and xingxing’s brutes are named from X1 to Xn. A competition consists of n games. At the beginning, starvae's brute Si must versus xingxing’s brute Xi. But it’s hard for starvae to win the competition, so starvae can change his brutes’ order to win more games. For the starvae’s brute Si, if it wins the game, starvae can get Vi scores, but if it loses the game, starvae will lose Vi scores. Before the competition, starvae’s score is 0. Each brute can only play one game. After n games, if starvae’s score is larger than 0, we say starvae win the competition, otherwise starvae lose it. 

It’s your time to help starvae change the brutes’ order to make starvae’s final score be the largest. If there are multiple orders, you should choose the one whose order changes the least from the original one. The original order is S1, S2, S3 … Sn-1, Sn, while the final order is up to you.

For starvae’s brute Si (maybe this brute is not the original brute Si, it is the ith brute after you ordered them) and xingxing’s brute Xi, at first Si has Hi HP and Xi has Pi HP, Si’s damage is Ai and Xi’s is Bi, in other words, if Si attacks, Xi will lose Ai HP and if Xi attacks, Si will lose Bi HP, Si attacks first, then it’s Xi’s turn, then Si… until one of them’s HP is less than 0 or equal to 0, that, it lose the game, and the other win the game.

Come on, starvae’s happiness is in your hand!

Input

First line is a number n. (1<=n<=90) Then follows a line with n numbers mean V1 to Vn. (0<Vi<1000) Then follows a line with n numbers mean H1 to Hn. (1<=Hi<=100)Then follows a line with n numbers mean P1 to Pn. (1<=Pi<=100) Then follows a line with n numbers mean A1 to An.(1<=Ai<=50) Then follows a line with n numbers mean B1 to Bn. (1<=Bi<=50) A zero signals the end of input and this test case is not to be processed.

Output

For each test case, if starvae can win the competition, print the largest score starvae can get, and then follow a real percentage means the similarity between the original order and the final order you had changed, round it to three digits after the decimal point. If starvae can’t win the competition after changing the order, please just print “Oh, I lose my dear seaco!” Maybe the sample can help you get it.

Sample Input

3
4 5 6
6 8 10
12 14 16
7 7 6
7 3 5
3
4 5 6
6 8 10
12 14 16
5 5 5
5 5 5
0

Sample Output

7 33.333%
Oh, I lose my dear seaco!

题意:有 S1-Sn 的 n 个勇士要与 X1-Xn 的 n 个勇士比赛,开始时,Si 的比赛对象是 Xi,若 Si 赢了 Xi,将获得 Vi 分,否则获得 -Vi 分,开始对决时,Si 有初始生命 Hi,初始攻击 Ai,Xi 有初始生命 Pi,初始攻击 Bi,Si 先出手,然后 Xi 失去 Ai 生命,若 Xi 未死,则 Xi 出手,Si 失去 Bi 生命,重复过程,直到有一方生命值小于等于 0 时,决斗结束

现在要重新安排 S、X 双方的决斗顺序,使可获取的分最多,输出可获得的最大值与原匹配与新匹配之间的相似性

思路:题目一开始给出的对决方式实质是一个匹配,现在要构造一个最优匹配,且要优先使用原边,套用模版进行计算即可,思路与  Assignment(HDU-2853)很像,不同的是,边权值需要自己进行计算,对于左 i 到右 j 的权值,要用一个循环来判断哪边的生命值先为 0

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#define PI acos(-1.0)
#define E 1e-6
#define MOD 16007
#define INF 0x3f3f3f3f
#define N 1001
#define LL long long
using namespace std;
int n;
int G[N][N];
int Lx[N],Ly[N];
bool visX[N],visY[N];
int linkX[N],linkY[N];
bool dfs(int x){
    visX[x]=true;
    for(int y=1;y<=n;y++){
        if(!visY[y]){
            int temp=Lx[x]+Ly[y]-G[x][y];
            if(temp==0){
                visY[y]=true;
                if(linkY[y]==-1 || dfs(linkY[y])){
                    linkX[x]=y;
                    linkY[y]=x;
                    return true;
                }
            }
        }
    }
    return false;
}
void update(){
    int minn=INF;
    for(int i=1;i<=n;i++)
        if(visX[i])
            for(int j=1;j<=n;j++)
                if(!visY[j])
                    minn=min(minn,Lx[i]+Ly[j]-G[i][j]);

    for(int i=1;i<=n;i++)
        if(visX[i])
            Lx[i]-=minn;

    for(int i=1;i<=n;i++)
        if(visY[i])
            Ly[i]+=minn;
}
int KM(){
    memset(linkX,-1,sizeof(linkX));
    memset(linkY,-1,sizeof(linkY));

    for(int i=1;i<=n;i++){
        Lx[i]=Ly[i]=0;
        for(int j=1;j<=n;j++)
            Lx[i]=max(Lx[i],G[i][j]);
    }

    for(int i=1;i<=n;i++){
        while(true){
            memset(visX,false,sizeof(visX));
            memset(visY,false,sizeof(visY));

            if(dfs(i))
                break;
            else
                update();
        }
    }

    int ans=0;
    for(int i=1;i<=n;i++)
        if(linkY[i]!=-1)
            ans+=G[linkY[i]][i];

    return ans;
}
int v[N],h[N],p[N],a[N],b[N];
int attack(int x,int y){
    int hpX=h[x],hpY=p[y];
    int vX=a[x],vY=b[y];
    while(hpX&&hpY){
        hpY-=vX;

        if(hpY<=0)
            return v[x];

        hpX-=vY;
        if(hpX<=0)
            return -v[x];
    }
}
int main(){
    while(scanf("%d",&n)!=EOF&&(n)){

        for(int i=1;i<=n;i++)
            scanf("%d",&v[i]);
        for(int i=1;i<=n;i++)
            scanf("%d",&h[i]);
        for(int i=1;i<=n;i++)
            scanf("%d",&p[i]);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)
            scanf("%d",&b[i]);

        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                G[i][j]=attack(i,j);

        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                G[i][j]=G[i][j]*(n+1);
                if(i==j)
                    G[i][j]++;
            }
        }

        int ans=KM();
        int temp1=ans/(n+1);
        int temp2=ans%(n+1);
        if(temp1<=0)
            printf("Oh, I lose my dear seaco!\n");
        else
            printf("%d %.3lf%%\n",temp1,100*temp2*1.0/n);


    }
    return 0;
}

 

brute force - grass shader,即暴力法-草地着色器,是一种常用于计算机图形学中的技术。 草地着色器是用于模拟和渲染草地效果的一种着色器。在计算机图形学中,草地是一种常见的自然景物,其细小且复杂的细节使得对其进行真实的渲染具有一定的挑战性。 在传统的渲染算法中,渲染草地往往需要对每一根草的位置、姿态和外观进行计算和渲染。这种方法在处理大量草地或复杂场景时会导致计算量巨大,效率低下。 而暴力法则是指使用蛮力的方式来解决问题,即通过逐个尝试所有可能的组合或计算来达到目标。在草地着色器中,暴力法指的是将渲染草地的计算问题拆分为许多小的片段,然后对每个片段进行详细的计算和渲染。 这种方法的优点是能够精确地模拟每一根草的细节和外观,从而产生逼真的草地效果。然而,暴力法的缺点是计算量大、效率低,因此对于大规模草地或复杂场景来说,并不是一个理想的选择。 为了提高渲染效率,研究人员和开发者们也提出了一些其他的草地着色器技术,如基于物理模型的草地着色器、基于图像纹理的草地着色器等。这些技术可以通过近似和优化算法来快速渲染大规模草地,提高渲染效果。 总而言之,brute force - grass shader是一种用于渲染草地的暴力法着色器。它虽然能够产生逼真的效果,但在处理大规模草地或复杂场景时效率不高,因此在实际应用中需要结合其他技术来提高渲染效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值