Problem Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Examples
Input
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意:给出 n 行,每行有 4 个数,每一列看做一个组,现在在每个组中选出一个数,问有多少种组合使得选出的 4 个数和为 0
思路:分治法
由于计算 4 个数的和并不好计算,因此可以使用分治的思想,将 4 组数分为两组,然后每组再分别计算和,最后对两组合进行排序,让正数与负数相加判断是否为 0 即可
Source Program
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<deque>
#include<vector>
#include<set>
#include<map>
#define PI acos(-1.0)
#define E 1e-6
#define INF 0x3f3f3f3f
#define N 10001
#define LL long long
const int MOD=998244353;
const int dx[]={-1,1,0,0};
const int dy[]={0,0,-1,1};
using namespace std;
int a[N],b[N],c[N],d[N];
int sumBe[N*N],sumLa[N*N];
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i]>>b[i]>>c[i]>>d[i];
//分组求和
int cnt=0;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
sumBe[cnt]=a[i]+b[j];
sumLa[cnt]=c[i]+d[j];
cnt++;
}
}
//对两组和进行排序
sort(sumBe,sumBe+cnt);
sort(sumLa,sumLa+cnt);
int res=0;
int right=cnt-1;
for(int left=0;left<cnt;left++){
//和太大,调整右边界
while(right>=0&&(sumBe[left]+sumLa[right])>0)
right--;
if(right<0)
break;
//一个left可能对应多组解
int newRight=right;
while(newRight>=0&&(sumBe[left]+sumLa[newRight])==0){
res++;
newRight--;
}
}
cout<<res<<endl;
return 0;
}