图论 —— 带花树算法

【概述】

带花树算法用于解决一般图的最大匹配问题。

对于一个图 G(V,E),他的匹配 M 是二元组 (u,v) 组成的集合,其中 u,v∈V,(u,b)∈E,且 M 中不存在重复的点,当 |M| 最大的时候,称 M 为图 G(V,E) 的最大匹配。

当图 G(V,E) 是一个二分图时,由于其若含有环,则一定是偶环(一个点数为 2k 的环),其最大匹配可以使用匈牙利算法或网络流算法来求解。

当图 G(V,E) 是一个一般图时,由于一般图会含有奇环(一个点数为 2k+1 的环),而经过一个奇环会得到两条含有同一个点的匹配边,因此当图 G(V,E) 是一个一般图时,无法直接进行增广,需要用改进算法来求解最大匹配,即带花树算法。

【带花树算法】

带花树算法仍是分 n 个阶段寻找增广路,由于问题出在奇环上,那么首先分析一下奇环的性质。

奇环中有 2k+1 个点,所以最多有 k 组匹配,也就是说有一个点没有匹配,即这个点在环内两边的连边都不是匹配边,也只有这个点可以向环外连边。

根据这个性质,可以将奇环缩成一个点(这个点称为花),由于增广路经过奇环,那么奇环内的增广路可以还原出来,因此缩完点后的图如果可以找到一条增广路,那么原图中也可以找到一条增广路

根据上述思想,整个求解过程可以分成 n 个阶段,每个阶段从没有匹配的 S 点开始 BFS 寻找增广路。

搜索的开始,将 S 点加入队列中,标记为 A 类点,如果从 x 点出发,搜索到一个未标记点,那么有两种情况:

1)如果这个未标记点 x 有匹配:将这个点设为 B 类点,它的匹配点设为 A 类点,加入队列继续增广。

2)如果这个未标记点 x 没有匹配:由于是从一个未匹配点开始进行搜索的,所以这说明找到了一条增广路,沿着过来的边找回去,展开带花树,在搜索的过程中,如果遇到了环,又有两种情况:

    ①修改搜索的过程中,如果遇到偶环:那么由于其不影响求解,因此不用管它
    ②修改搜索的过程中,如果遇到奇环:那么找到当前点 x 和找到的点 y,求出他们最近公共花祖先,然后用并查集缩掉环。

在缩环的时候,维护一个 pre 数组,表示回跳的时走到这里该往哪一个方向走回去。回跳的时候,每次找到 pre,然后修改这条边,接着跳到 pre 原来的 match 处。

如果倒着进入一个花的时候,上方的边为非匹配边,那么我们会往下走,这个时候 pre 就应该往下设,中间相遇的位置 pre 互相连接,即:pre[x]=y,pre[y]=x

时间复杂度:由于算法分为 n 个阶段,每个阶段最多把整个图遍历一次,每个点会最多被缩 n 次花,所以总复杂度为 O(n3)

【模版】

struct Edge {
    int to,next;
} edge[N*N*2];
int head[N],tot;
int n;//n个点
int father[N],pre[N];//father记录一个点属于哪个一个点为根的花
int Q[N*N*2],first,tail;//bfs队列
int match[N];//匹配
bool odd[N],vis[N];//odd记录一个点为奇点/偶点,1为奇,0为偶
int timeBlock;//LCA时间戳
int top[N],rinedge[N];

void addEdge(int x,int y) {//添边
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot++;
}
int Find(int x){//并查集寻找根节点
    if(father[x]!=x)
        return father[x]=Find(father[x]);
    return x;
}
int lca(int x, int y){//求解最近公共祖先
    timeBlock++;
    while(x){
        rinedge[x]=timeBlock;
        x=Find(top[x]);
    }
    x=y;
    while(rinedge[x]!=timeBlock)
        x=Find(top[x]);
    return x;
}
void blossom(int x, int y, int k) {//将奇环缩成一个点并将原来是奇点的点变为偶点并加入队列
    while(Find(x)!=Find(k)){
        pre[x]=y;

        y=match[x];
        odd[y]=false;
        Q[tail++]=y;

        father[Find(x)]=k;
        father[Find(y)]=k;

        x=pre[y];
    }
}
bool bfs(int s) {
    memset(top,0,sizeof(top));
    memset(pre,0,sizeof(pre));
    memset(odd,false,sizeof(odd));
    memset(vis,false,sizeof(vis));
    for(int i=1;i<=n;i++)
        father[i]=i;

    vis[s]=true;
    first=tail=0;
    Q[tail++]=s;

    while(first!=tail){
        int now=Q[first++];
        for(int i=head[now];i!=-1;i=edge[i].next){
            int to=edge[i].to;
            if(!vis[to]){
                top[to]=now;
                pre[to]=now;
                odd[to]=true;
                vis[to]=true;

                if(!match[to]){
                    int j=to;
                    while(j){
                        int x=pre[j];
                        int y=match[x];
                        match[j]=x;
                        match[x]=j;
                        j=y;
                    }
                    return true;
                }

                vis[match[to]]=true;
                top[match[to]]=to;
                Q[tail++]=match[to];
            }
            else if(Find(now)!=Find(to) && odd[to]==false) {
                int k=lca(now,to);
                blossom(now,to,k);
                blossom(to,now,k);
            }
        }
    }
    return false;
}

int main() {

    memset(head,-1,sizeof(head));
    memset(match,0,sizeof(match));
    tot=0;

    int m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        addEdge(x,y);
        addEdge(y,x);
    }

    int res=0;
    for(int i=1;i<=n;i++)
        if(!match[i])
            res+=bfs(i);
    printf("%d\n",res);
    for(int i=1;i<=n;i++)
        printf("%d ",match[i]);
    printf("\n");

    return 0;
}

【例题】

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值