【题目描述】
将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5; 1,5,1; 5,1,1;
问有多少种不同的分法。 输出一个整数,即不同的分法
【输入】
两个整数n,k(6<n≤200,2≤k≤6),中间用单个空格隔开。
【输出】
一个整数,即不同的分法。
【输入样例】
7 3
【输出样例】
4
【源程序】
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
const int MOD = 1E9+7;
const int N = 1000000+5;
const int dx[] = {-1,1,0,0,-1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;
int res;
int a[N];
int n,k;
void dfs(int sum,int step){
if(step==k){
if(sum>=a[step-1])
res++;
return;
}
for(int i=a[step-1];i<=sum/(k-step+1);i++){//上下界剪枝
a[step]=i;
sum-=i;
dfs(sum,step+1);
sum+=i;
}
}
int main() {
scanf("%d%d",&n,&k);
a[0]=1;
dfs(n,1);
printf("%d\n",res);
return 0;
}