Alex_McAvoy的博客

I'm not there,I'm not die.

处女座的百日理财计划

【题目描述】 处女座为了有更充足的资金和小姐姐一起玩耍,于是就放"高利贷"给小姐姐,一般小姐姐一周就会还钱,而处女座只要10%的利率,这样算下来,如果可以利滚利的话,1元钱经过1年(360天)可以变成51.43元呢,想起来就非常美滋滋哦! 不过总是借钱给小姐姐并不是长远之策...

2019-01-31 22:34:54

阅读数 34

评论数 0

训练日志 2019.1.31

寒假训练结束了,跟俊杰坚持到最后一天。。。 前两天一直犯懒没写训练日记,用总结补上好了。。。 这两天教练过来的次数比较多,跟我们也交流了不少东西,确实是学到了。现在自己的核心问题在于算法看了不少,但还是没有深入理解如何去应用,没有真正的把看过的转换成自己的东西,以至于很多时候碰到题完全没有思路...

2019-01-31 20:54:34

阅读数 91

评论数 0

处女座和小姐姐(二)

【题目描述】 课上处女座成功将纸条传给了小姐姐,约下午和小姐姐一起逛街。他们坐在公交车上一起欣赏窗外的广告牌,每一个广告牌都有一个编号,而处女座的视野范围是有限的,每次只能看到连续的p个广告牌。由于处女座是数学大师,他用O(1)的时间算出来了他看到的广告牌编号的积mod P的值并记录了下来,直到...

2019-01-30 19:14:36

阅读数 104

评论数 0

图论 —— 图的连通性 —— 有桥连通图加边变边双连通图

对于一个有桥的连通图,加边变成边双连通图 1.求出所有的桥,然后删除这些桥边。剩下的每个连通块都是一个双连通子图。 2.把每个双连通子图收缩为一个顶点。 3.加回桥边,统计度为1的节点的个数(叶节点的个数),记为 leaf 则:至少在树上加(leaf+1)/2 条边,就能使树达到边双连通 ...

2019-01-30 16:43:21

阅读数 342

评论数 0

图论 —— 图的连通性 —— Tarjan 求双连通分量

【概念】 1.双连通分量:对于一个无向图,其边/点连通度大于1,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图,即删掉任意边/点后,图仍是连通的 2.分类: 1)点双连通图:点连通度大于 1 的图 2)边双连通图:边连通度大于 1 的图 【原理】 1.求点双连...

2019-01-30 15:10:43

阅读数 146

评论数 0

图论 —— 图的连通性 —— Tarjan 求割点与桥

【概念】 1.割点 1)割点:删除某点后,整个图变为不连通的两个部分的点 2)割点集合:在一个无向图中删除该集合中的所有点,能使原图变成互不相连的连通块的点的集合 3)点连通度:最小割点集合点数 如上图,若去掉 0,则图被分成 12和 34 两个连通分量;若去掉 3,则图被分成 01...

2019-01-30 15:06:42

阅读数 221

评论数 0

图论 —— 图的连通性 —— Tarjan 缩点

缩点常应用于给一个有向图,求在图中最少要加多少条边能使得该图变成一个强连通图 首先求出该图的各个强连通分量,然后把每个强连通分量看出一个点(即缩点),最后得到了一个有向无环图(DAG) 对于一个DAG,需要添加 max(a,b) 条边才能使其强连通 其中 a 为 DAG 中出度为 0 的点总...

2019-01-30 15:01:55

阅读数 191

评论数 0

图论 —— 图的连通性 —— Tarjan 求强连通分量

【概述】 Tarjan 算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。 搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。 【基本思路】 定义 DFN(u) 为节点 u 搜索的次序编号(时间戳),即是第几个被搜索到的...

2019-01-30 15:00:06

阅读数 142

评论数 0

图论 —— 图的连通性 —— Kosaraju 算法

【概述】 Kosaraju 算法是最容易理解,最通用的求强连通分量的算法,其关键的部分是同时应用了原图 G 和反图 GT 。 【基本思想】 1.对原图 G 进行 DFS 搜索,计算出各顶点完成搜索的时间 f 2.计算图的反图 GT,对反图也进行 DFS 搜索,但此处搜索时顶点的访问次序不是...

2019-01-30 14:54:57

阅读数 233

评论数 0

图论 —— 图的连通性 —— 并查集判断连通图

当需要判断图是否为连通图时,可以使用并查集来进行连通分量的统计,若连通分量大于 1,则说明图中存在多个连通分量,图不为连通图。 int n,m; int father[N]; int Find(int x){ if(father[x]==-1) return x; ...

2019-01-30 14:52:15

阅读数 789

评论数 0

处女座的比赛

【题目描述】 经过了训练、资金等多方面的准备,处女座终于可以去比赛了!比赛采用codeforces赛制,也就意味着可以插人。现在有一道字符串的题目,处女座在room里看到一个用hash做的,于是决定把它hack掉。这个人的核心代码如下: const int mod=9983; mul[0]=...

2019-01-30 12:01:27

阅读数 134

评论数 0

处女座的比赛资格

【题目描述】 处女座想出去比赛,但是又不知道学校能不能给到足够的经费。然而处女座是大众粉丝,有着很好的人缘,于是他找了一个在学校管经费的地方勤工俭学偷来了一份报销标准。 由于处女座是万人迷,所以他在中间途径的每一条线路上都会发生一些故事,也许是粉丝给他发了一个200元的微信红包,也许是和他的迷...

2019-01-27 19:09:11

阅读数 55

评论数 0

处女座与线性代数

【题目描述】 众所周知,处女座是数学大师。他定义了k维空间里的处女座点。 对于给出的k维度空间上N个点,处女座点满足:对于这个点P和空间里任意其他两个点P1、P2,有 dot(PP1,PP2)<0。 现在给你一个k维空间和这N个点,请求出这里面所有的处女座点。 Hint: ...

2019-01-27 15:44:27

阅读数 70

评论数 0

训练日志 2019.1.26

上午补了道 2-sat 的题,这类问题还是不太熟练,不是很能准确的找到条件 下午打比赛,立的 flag 成功崩了。。。数组没开小但把精度爆了。。+= 把 + 忘了。。。一道巨水的题把输入看错了。。。大家都是出了 5 道题,就自己排名 100 开外。。。再也不立 flag 了。。。 晚上照例补题...

2019-01-26 22:44:11

阅读数 30

评论数 0

处女座的训练

【题目描述】 处女座靠着自己的家教本领赚够了去比赛的钱,于是开启了疯狂训练。在每个夜深人静第二天不收作业的夜晚,他都会开始刷题。 "今日又是一个刷题的夜晚。"他挑选了n道题开始刷,而题太多,刷不掉,理还乱(呜呜)、自己没有解决的题目每分钟都会给他带来bi的疲倦值,而解决每一...

2019-01-26 21:58:41

阅读数 55

评论数 0

处女座和小姐姐

【题目描述】 既然昨天晚上处女座已经训练了,明天才要交作业,那今天就是平淡无奇要上课的一天了。 然而处女座也想自己的小姐姐了,可是这节课是老师安排座位,处女座坐在(1,1),而小姐姐坐在(n,m)。他们之间只能通过传纸条的方式来交流感情。对于处女座而言,他上课不想过度分心,因此并不想传纸条,只...

2019-01-26 21:58:22

阅读数 63

评论数 0

处女座和小姐姐(三)

【题目描述】 经过了选号和漫长的等待,处女座终于拿到了给小姐姐定制的手环,小姐姐看到以后直呼666! 处女座其实也挺喜欢6这个数字的,实际上他做手环的时候选取的k=6。所以他对于包含数码6的数字极其敏感。每次看到像4567这样的数字的时候他的心就像触电了一样,想起了小姐姐。 现在你要给处女座...

2019-01-26 18:18:15

阅读数 126

评论数 1

训练日志 2019.1.25

昨天晚上熬夜看球。。。今天早上效率成功的低了不少。。。就补了一道题。。 下午打比赛都是之前的题,出的太少,效率不够高,有两道题思路很明确,但卡细节卡到死,long long 和 Runtime 以及把赋值号写成了等于号。。。 晚上补了补昨天牛客的题,唯二的感受就是 STL 的函数真好用。。。通...

2019-01-25 22:21:03

阅读数 133

评论数 0

计算几何 —— 二维几何基础

【理论】 1.距离度量方法:点击这里 2.三角形的面积:点击这里 3.平面分割问题:点击这里 【例题】 Building A New Barn(POJ-3269)(曼哈顿距离):点击这里 Aladdin and the Optimal Invitation(LightOJ-1349)(...

2019-01-25 21:58:07

阅读数 47

评论数 0

计算几何 —— 二维几何基础 —— 三角形的面积

【海伦公式】 在平面内,有一个三角形,设其三边长分别为 a、b、c,面积为 S ,则有: 其中, double calculate(double a,double b,double c){ double p=(a+b+c)/2; return sqrt( p*(p-a)*(...

2019-01-25 21:54:00

阅读数 94

评论数 0

提示
确定要删除当前文章?
取消 删除