参考了:http://blog.csdn.net/zenghaitao0128/article/details/78512715,作了一些自己的补充。
numpy中的reshape函数和squeeze函数是深度学习代码编写中经常使用的函数,需要深入的理解。
其中,reshape函数用于调整数组的轴和维度,而squeeze函数的用法如下,
语法:numpy.squeeze(a,axis = None)
1)a表示输入的数组;
2)axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
3)axis的取值可为None 或 int 或 tuple of ints, 可选。若axis为空,则删除所有单维度的条目;
4)返回值:数组
5) 不会修改原数组;
作用:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
举例:
numpy的reshape和squeeze函数:
import numpy as np
e = np.arange(10)
print(e)
一维数组:[0 1 2 3 4 5 6 7 8 9]
f = e.reshape(1,1,10)
print(f)
三维数组:(第三个方括号里有十个元素)
[[[0 1 2 3 4 5 6 7 8 9]]],前两