基于正交对立学习的改进麻雀搜索算法-附代码

基于正交对立学习的改进麻雀搜索算法


摘要:针对麻雀搜索算法种群多样性少,局部搜索能力弱的问题,本文提出了基于正交对立学习的改进型麻雀搜索算法(OOLSSA)。首先,在算法中引入正态变异算子,丰富算法种群多样性;其次,利用对立学习策略,增强算法跳出局部最优的能力;然后,在加入者更新之后引入正交对立学习机制,加快算法的收敛速度;

1.麻雀优化算法

基础麻雀算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/108830958

2. 改进麻雀算法

2.1 正态变异扰动

在其原始加人者的位置更新公式中, 直接让非饥饿的 个体一开始从发现者最优位置附近进行更新, 这样会导致 种群的多样性单一, 增加种群陷人局部最优的可能性。因 此, 这里引人正态变异算子对式 (2) 中的最优位置进行扰 动, 让非饥俄的加人者向发现者最优位置的变异解学习, 这 样能够增大种群多样性与跳出局部最优的能力。其中, 正 态变异公式为: X t = X t + α ⋅ X t \boldsymbol{X}^t=\boldsymbol{X}^t+\alpha \cdot \boldsymbol{X}^t Xt=Xt+αXt 。为了避免仅加值的方法

影响算法性能, 在扰动公式中引入方向因子 F F F, 改进公式如 式 (4) (5) 所示。
F = { − 1 , r < 0.5 1 ,  其他  ( 4 ) X R b  estj  t = X bestj  t + F ⋅ α ⋅ X bextj  t ( 5 ) \begin{aligned} &F=\left\{\begin{array}{c} -1, \quad r<0.5 \\ 1, \text { 其他 } \end{array}\right. (4)\\ &\boldsymbol{X}_{R b \text { estj }}^t=\boldsymbol{X}_{\text {bestj }}^t+F \cdot \alpha \cdot \boldsymbol{X}_{\text {bextj }}^t (5) \end{aligned} F={1,r<0.51, 其他 (4)XRb estj t=Xbestj t+FαXbextj t(5)
式 (4) (5) 中: r r r 是取值范围在 [ 0 , 1 ] [0,1] [0,1] 的随机数, α \alpha α 是服从 N ( 0 , 1 ) N(0,1) N(0,1) 的随机数。加人者更新公式改进如式 (6) 所示。
X i , j t + 1 = { Q ⋅ exp ⁡ ( X uosstj  t − X i , j t i 2 ) , i > n 2 X Rbeetj  t + 1 + ∣ X i , j t − X R b e e x j t + 1 ∣ ⋅ A + ⋅ L ,  其他  (6) \boldsymbol{X}_{i, j}^{t+1}= \begin{cases}Q \cdot \exp \left(\frac{\boldsymbol{X}_{\text {uosstj }}^t-\boldsymbol{X}_{i, j}^t}{i^2}\right), & i>\frac{n}{2} \\ \boldsymbol{X}_{\text {Rbeetj }}^{t+1}+\left|\boldsymbol{X}_{i, j}^t-\boldsymbol{X}_{R b e e x j}^{t+1}\right| \cdot \boldsymbol{A}^{+} \cdot \boldsymbol{L}, & \text { 其他 }\end{cases} \tag{6} Xi,jt+1={Qexp(i2Xuosstj tXi,jt),XRbeetj t+1+ Xi,jtXRbeexjt+1 A+L,i>2n 其他 (6)
式 (6)中: X R  Recesj  t \boldsymbol{X}_{R \text { Recesj }}^t XR Recesj t 是当前最优发现者的正态变异扰动解。

2.2 对立学习

对立学习是一种常用的跳出局部最优解位置的策略。 在原始麻雀搜索算法的侦查时, 最优位置的麻雀往最差解 靠拢,其他位置麻﨎往最优值靠拢。虽然往最差解位置搜 索, 一定程度上能够避免陷人局部最优, 但这样并不利于种 群的收敛。而对立学习不仅能帮助个体快速逃离当前位 置, 而且对立位置相比于当前最差位置, 其适应度值更有可 能比于当前位置更优, 因此,在侦查部分的位置更新公式引 人对立学习策略, 其改进公式如式 (7):
X i , j t + 1 = { X b e s t j t + β ⋅ ∣ X i , j t − X b e s t j t ∣ , f i > f g l b + u b − β ⋅ X i , j t ,  其他  (7) \boldsymbol{X}_{i, j}^{t+1}=\left\{\begin{array}{l} \boldsymbol{X}_{b e s t j}^t+\beta \cdot\left|\boldsymbol{X}_{i, j}^t-\boldsymbol{X}_{b e s t j}^t\right|, \quad \boldsymbol{f}_i>\boldsymbol{f}_{\mathrm{g}} \\ l b+u b-\beta \cdot \boldsymbol{X}_{i, j}^t, \text { 其他 } \end{array}\right. \tag{7} Xi,jt+1={Xbestjt+β Xi,jtXbestjt ,fi>fglb+ubβXi,jt, 其他 (7)
式 (7) 中: β \beta β 是服从 N ( 0 , 1 ) N(0,1) N(0,1) 的随机数, l b l b lb u b u b ub 分别为搜索 空间的下界和上界。

2.3 正交对立学习

正交对立学习策略是利用当前解与对立解, 通过正交 实验设计, 以较少的实验次数找到不同因素的水平最佳组 合的一种方法。目前相关研究方面, 閤大海等 [ 14 ] { }^{[14]} [14] 提出了基 于正交设计的反向学习策略, 并应用在差分进化算法上, 提 高了算法的鲁棒性; 周凌云等 [ 15 ] { }^{[15]} [15] 基于萤火虫算法, 引人了 正交重心反向学习策略, 增强了算法求解复杂问题的能力; 基于此, 本文融合对立学习与正交学习, 提出正交对立学习 策略, 对麻雀搜索算法进行改进。该策略的基本思想是: 利 用当前位置与其对立位置, 根据正交表构建正交候选解, 接 着对各候选解进行评估, 最终取出其中最佳的正交组合。 通过这种方式, 充分利用个体和对立个体中各维度的信息 并找到最佳组合, 其流程如图 1
L 4 ( 2 3 ) = [ 1 1 1 1 2 2 2 1 2 2 2 1 ] (8) \boldsymbol{L}_4\left(2^3\right)=\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}\right] \tag{8} L4(23)= 112212121221 (8)
在正交表中,同一列的 1 和 2 分别代表第一个水平和第 二个水平的在该列的维度信息。矩阵中的第一行是当前个体 本身, 其他行是两个水平不同维度之间的正交组合, 式 (8)中只 需要进行 4 次评估, 即可找到当前解与对立解的最佳正交组 合。而针对本文的正交对立学习策略, 则需要构建 D D D 因素二 水平的正交表, 其中 D D D 为种群维度。随着维数的增多, 试验评 估的次数也会增加,但算法的收敛性能也会更好。
请添加图片描述

由于正交表包括个体本身位置, 每一个候选解均有相 同的概率成为最佳正交解, 存在经过 M M M 次的评估后, 仍然 存在输出最优解为个体本身的可能性。假设种群中每一个 个体都进行正交学习, 这样固然能够更好的加快算法收敛 速度, 但这样同时也会大大增加实验评估的次数, 并不适用 于解决实际问题。因此, 本文正交对立学习策略仅应用在 加人者位置更新部分。在加人者按照式 (6) 更新后, 再利用 式 (7) 中的对立公式得到其对立解, 将以上两个位置按照 D D D 因素二水平的正交表构建正交候选解, 经过计算适应度值 评估后, 将最佳正交解候选解作为当前加人者的最终更新 位置。通过这种方法, 能够提高算法收敛速度与精度的同 时避免算法陷人局部最优的问题。
请添加图片描述

3.实验结果

请添加图片描述

4.参考文献

[1]王天雷,张绮媚,李俊辉,周京,刘人菊,谭南林.基于正交对立学习的改进麻雀搜索算法[J].电子测量技术,2022,45(10):57-66.DOI:10.19651/j.cnki.emt.2209151.

5.Matlab代码

6.Python代码

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 粒子群算法正交匹配追踪改进是一种优化算法,它通过对粒子的位置和速度进行调整来寻找最优解。正交匹配追踪改进可以提高算法的收敛速度和精度,使得算法更加稳定和可靠。关于具体的实现细节,您可以参考相关的论文和文献,或者查找相关的代码实现。 ### 回答2: 基于粒子群算法正交匹配追踪(Particle Swarm Optimization for Orthogonal Matching Pursuit,PSO-OMP)是一种应用于稀疏信号恢复的改进方法。它结合了粒子群算法正交匹配追踪算法的优点,提高了信号恢复的精确度和收敛速度。 传统的OMP方法是一种迭代的程序,它通过不断选择适合目标信号的原子或基函数,逐步逼近目标信号。但是,该方法在处理较大规模的问题时存在计算复杂度高、收敛速度慢等问题。 PSO-OMP通过引入粒子群算法的思想,将每个迭代过程中的选择过程替换为一群粒子在搜索空间中的移动。这些粒子具有速度和位置两个属性,它们根据当前的历史最佳位置和全局最佳位置来更新自己的速度和位置。对于每个迭代步骤,根据每个粒子的位置选择适合目标信号的原子,同时更新全局最佳位置。 PSO-OMP的改进主要表现在以下几个方面: 首先,PSO-OMP通过使用粒子群算法的速度和位置更新机制,使得算法能够较快地找到全局最佳位置,从而加快了收敛速度。 其次,引入粒子群算法的随机性使得在搜索空间中有更好的探索能力,相对于传统的OMP方法,更具有全局搜索能力。 最后,通过对粒子的速度和位置进行限制,PSO-OMP能够在每一步选择出最适合目标信号的原子,提高了信号恢复的精确度。 总之,基于粒子群算法正交匹配追踪改进了传统的OMP方法,在收敛速度和精确度上都取得了显著的提升。它在稀疏信号恢复领域具有更好的应用前景。 ### 回答3: 基于粒子群算法正交匹配追踪(Orthogonal Matching Pursuit,简称OMP)是一种用于稀疏信号重建的算法。对于一个稀疏信号,OMP通过迭代地选取原子以逼近信号,然后通过线性回归计算估计误差,并更新当前估计值。传统的OMP算法存在着一些问题,如收敛速度慢、稀疏性估计误差大等。 为了改进基于粒子群算法正交匹配追踪算法,可以采取以下一些方法: 1. 引入权重调整:根据信号的重要性,对原子进行权重调整。可以根据特定的度量指标对原子进行评估,然后根据评估结果调整原子的权重。这样可以提高算法对信号的逼近能力,减小估计误差。 2. 优化粒子群算法的搜索策略:改进粒子的随机初始化策略,使得粒子更有可能搜索到全局最优解。可以采用动态调整粒子的速度和方向的方法,使得粒子更好地探索搜索空间。 3. 引入自适应参数:根据迭代过程中的结果,自适应地调整算法的参数。可以根据估计误差的变化动态地调整迭代次数,从而提高算法的收敛速度。 4. 结合其他优化算法:将粒子群算法与其他优化算法结合起来,如遗传算法、模拟退火算法等,以提高算法的搜索效果和全局收敛性。 通过以上改进,基于粒子群算法正交匹配追踪算法在稀疏信号重建问题上可以得到更好的性能和效果。这些改进方法旨在提高算法的收敛速度、稀疏性估计准确性和全局搜索能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值