智能优化算法应用:基于灰狼算法PID参数优化 - 附代码

智能优化算法应用:基于灰狼算法PID参数优化 - 附代码


摘要:本文主要介绍如何用灰狼算法进行PID参数的优化。

1.PID简介

PID(Proportion-Integration-Differentiation)控 制 器通过比例单元 P、积分单元 I和微分单元 D 的线性组合构成控制量来实现对被控对象的控制,主要适用于基本线性和动态特性不随时间变化的系统。不同的控制规律适用于不同的生产过程,必须合理选择相应的控制规律,否则PID控制器将达不到预期的控制效果当PID控制器采样周期较小时,可以将连续系统离散化,即以一阶差分代替微商,求和代替积分,矩形积分近似代替连续积分,得到如下差分方程:
Δ u ( t ) = K p Δ e ( k ) + K i Δ e ( k ) + K d Δ 2 e ( k ) (1) \Delta u(t)=K_p \Delta e(k) + K_i \Delta e(k) + K_d \Delta ^2e(k)\tag{1} Δu(t)=KpΔe(k)+KiΔe(k)+KdΔ2e(k)(1)
其中e为输入, K p K_p Kp 为比例系数, K i K_i Ki 为积分时间常数, K d K_d Kd 为微分时间常数。

2.灰狼算法简介

灰狼算法原理请参考:https://blog.csdn.net/u011835903/article/details/107716390

3.适应度函数设计

在此算法中,目标函数设置如下:
F = ∫ 0 ∞ ( w 1 ∣ e ( t ) ∣ + w 2 u 2 ( t ) ) d t (2) F = \int_{0}^{\infty}(w_1|e(t)|+w_2u^2(t))dt \tag{2} F=0(w1e(t)+w2u2(t))dt(2)

其中, e ( t ) e(t) e(t) 为输入值与输出值之间的误差,考虑到迭代过程的动态特性,采取其绝对值的积分; u ( t ) u(t) u(t) 为控制值,加入此项是为了避免控制幅度过大; w 1 w_1 w1 ω 2 ω_2 ω2 为权重,取值范围[0,1]。

此外,还需采取限制措施防止超调,即当出现超调时,在目标函数中额外引入超调项,此时的设置如下:
F = ∫ 0 ∞ ( w 1 ∣ e ( t ) ∣ + w 2 u 2 ( t ) + w 3 ∣ e ( t ) ∣ ) d t , e ( t ) < 0 (3) F =\int_{0}^{\infty}(w_1|e(t)| + w_2u^2(t)+w_3|e(t)|)dt,e(t)<0 \tag{3} F=0(w1e(t)+w2u2(t)+w3e(t))dt,e(t)<0(3)
其中, w 3 w_3 w3为权值,且 w 3 > > w 1 w_3 >>w_1 w3>>w1 ,一般情况下, w 1 = 0.999 , w 2 = 0.001 , w 3 = 100 w_1 =0.999,w_2 =0.001 , w_3 =100 w1=0.999w2=0.001w3=100

所以灰狼算法的目标就是找到一组pid值,使得F误差最小。

4.算法实验与结果

本文选择二阶系统的传递函数:
G ( s ) = 50 / ( 0.125 s 2 + 7 s ) (4) G(s) = 50/(0.125s^2+7s) \tag{4} G(s)=50/(0.125s2+7s)(4)
灰狼算法参数设置如下:

SearchAgents_no=50; %  种群数量
Max_iteration=100; %  设定最大迭代次数
lb = -5; %下边界
ub = 5;  %上边界
dim = 3; %维度pid3个参数
S = 1;% 1为单位阶跃响应,其他为正弦输入
fobj = @(X) PID_controller(X,S);%适应度函数

单位阶跃响应寻优结果:

正弦函数输入结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从收敛曲线来看,单位阶跃和正弦输入,算法都在不断寻优。从单位阶跃响应来看,系统上升时间和超调均较小,控制效果明显。从正弦输入结果来看,输入与输出控制量误差较小。

5.参考文献:

[1] 贺圣彦, 曹中清, 余胜威. 基于花授粉算法的PID参数优化[J]. 计算机工程与应用, 2016.

6.Matlab 代码

  • 10
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 答案:根据你的要求,我写了一段灰狼算法优化pid参数代码,如下:import numpy as npdef gray_wolf_optimizer(f, bounds, num_params, max_iterations, alpha = 0.5, beta = 0.8, gamma = 0.9): # Initialize the parameters num_wolves = num_params + 4 pos = np.random.uniform(bounds[:, 0], bounds[:, 1], (num_wolves, num_params)) vel = np.zeros((num_wolves, num_params)) fitness = np.apply_along_axis(f, 1, pos) best_pos = pos[np.argmin(fitness)] best_fit = np.min(fitness) # Iterate for iteration in range(max_iterations): # Update the position and velocity for i in range(num_wolves): a = 2 * alpha * np.random.rand() - alpha b = 2 * beta * np.random.rand() - beta c = 2 * gamma * np.random.rand() - gamma for j in range(num_params): if i != 0: r1 = np.random.rand() r2 = np.random.rand() A1 = 2 * a * r1 - a C1 = 2 * c * r2 - c D_x = abs(C1*best_pos[j] - pos[i][j]) x_1 = best_pos[j] - A1*D_x vel[i][j] = (x_1 - pos[i][j])*b pos[i][j] = x_1 else: r1 = np.random.rand() r2 = np.random.rand() A2 = 2 * a * r1 - a C2 = 2 * c * r2 - c D_x = abs(C2*pos[i+1][j] - pos[i][j]) x_2 = pos[i+1][j] - A2*D_x vel[i][j] = (x_2 - pos[i][j])*b pos[i][j] = x_2 # Update the fitness fitness = np.apply_along_axis(f, 1, pos) # Update the best position and fitness if np.min(fitness) < best_fit: best_pos = pos[np.argmin(fitness)] best_fit = np.min(fitness) return best_pos, best_fit ### 回答2: 灰狼优化算法是一种基于群体智能优化算法,灵感来源于灰狼在群体中的社会行为。该算法能够帮助优化PID控制器的参数。 下面是一个灰狼算法优化PID参数代码示例: ```python import numpy as np def objective_function(x): # 定义需要进行优化的目标函数,即要求解的问题 # 假设目标函数是一个简单的线性函数,可根据实际问题进行修改 return 3*x[0] + 4*x[1] + 2*x[2] def gray_wolf_optimization(num_wolves, num_iterations, alpha, beta, delta): num_dimensions = 3 ub = [100, 100, 100] # 上界 lb = [0, 0, 0] # 下界 # 初始化种群位置 wolves = np.zeros((num_wolves, num_dimensions)) for i in range(num_wolves): wolves[i] = np.random.uniform(lb, ub) # 迭代优化 for iteration in range(num_iterations): for i in range(num_wolves): # 计算适应度函数值 fitness = objective_function(wolves[i]) # 更新alpha狼 if fitness < alpha: alpha = fitness alpha_wolf = wolves[i] # 更新beta狼 if alpha < fitness < beta: beta = fitness beta_wolf = wolves[i] # 更新delta狼 if alpha < fitness and beta < fitness < delta: delta = fitness delta_wolf = wolves[i] # 更新所有狼的位置 for i in range(num_wolves): for j in range(num_dimensions): a = 2 * np.random.uniform() - 1 c = 2 * np.random.uniform() l = np.random.uniform(-1, 1) p = np.random.uniform() if p < 0.5: if np.abs(a) < 1: wolves[i, j] = alpha_wolf[j] - a * np.abs(c * alpha_wolf[j] - wolves[i, j]) else: wolves[i, j] = alpha_wolf[j] - a * np.abs(c - wolves[i, j]) else: wolves[i, j] = (alpha_wolf[j] + beta_wolf[j] + delta_wolf[j]) / 3 + l return alpha_wolf # 调用优化函数进行PID参数优化 best_solution = gray_wolf_optimization(10, 100, float('inf'), float('inf'), float('inf')) print("最优解:", best_solution) ``` 这段代码中,假设需要优化的目标函数是一个简单的线性函数(可以根据实际问题进行修改)。`gray_wolf_optimization` 函数用于执行灰狼优化算法,其中 `num_wolves` 是狼的数量,`num_iterations` 是迭代次数,`alpha`、`beta`、`delta` 是优秀狼、好狼、差狼的适应度初始值。算法根据适应度值更新当前最好的狼位置,并利用公式更新所有狼的位置。最后返回最优解。 通过调用 `gray_wolf_optimization` 函数,可以得到灰狼优化算法得到的最优解,并在控制台输出。 ### 回答3: 灰狼算法(Grey Wolf Optimizer, GWO)是一种基于群体智能优化算法,灵感源自于灰狼捕猎行为。它将一组灰狼视为搜索空间中的潜在解,并模拟狼群中的个体行为来优化问题。下面以优化PID参数为例,演示一个基于灰狼算法的简单代码实现。 首先,对于一个给定的PID参数,我们需要定义目标函数(即待优化的性能指标),以用于衡量PID参数的优劣。在这里,我们以系统响应时间的最小化为目标,即目标函数为系统响应时间。 接下来,我们初始化灰狼群体的位置,并给定每个灰狼的初始参数范围。然后,根据目标函数的值来更新灰狼的位置,直到满足停止条件。 代码如下: ```python import numpy as np # 定义目标函数(系统响应时间) def target_function(pid): # 编写计算系统响应时间的代码 return response_time # 灰狼算法 def grey_wolf_optimization(): # 初始化灰狼群体的位置和参数范围 num_wolves = 10 # 灰狼数量 max_iterations = 1000 # 最大迭代次数 alpha_pos = np.zeros(3) # 记录最优位置 alpha_score = float('inf') # 记录最优分数(最小化问题,初始设置成无穷大) lower_bound = np.array([-10, -10, -10]) # PID参数的下界 upper_bound = np.array([10, 10, 10]) # PID参数的上界 # 随机初始化灰狼的位置 wolves_pos = np.random.uniform(lower_bound, upper_bound, (num_wolves, 3)) # 主循环 iteration = 0 while iteration < max_iterations: # 遍历每个灰狼 for i in range(num_wolves): # 计算目标函数的值 score = target_function(wolves_pos[i]) # 更新最优位置和分数 if score < alpha_score: alpha_score = score alpha_pos = wolves_pos[i] # 更新灰狼的位置 a = 2 - iteration * (2 / max_iterations) # alpha参数(控制位置更新速度) for i in range(num_wolves): for j in range(3): # PID参数的维度 r1 = np.random.random() # 随机数1 r2 = np.random.random() # 随机数2 # 更新位置 A1 = 2 * a * r1 - a C1 = 2 * r2 D_alpha = abs(C1 * alpha_pos[j] - wolves_pos[i][j]) wolves_pos[i][j] = alpha_pos[j] - A1 * D_alpha # 边界处理 if wolves_pos[i][j] < lower_bound[j]: wolves_pos[i][j] = lower_bound[j] if wolves_pos[i][j] > upper_bound[j]: wolves_pos[i][j] = upper_bound[j] iteration += 1 # 返回最佳 PID 参数 return alpha_pos # 调用灰狼算法优化 PID 参数 best_pid = grey_wolf_optimization() print("最佳 PID 参数为:", best_pid) ``` 请注意,这只是一个简单的灰狼算法的实现示例,你可以根据实际需要进行修改和优化。同时,你还需要根据具体问题来编写计算目标函数的代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值