基于pytorch的无需分割字符的车牌识别

本文介绍了两种无需字符分割的车牌识别方法,包括CRNN+CTC和卷积Only模型。通过GitHub开源代码,展示了如何利用这两种方法进行训练和测试,简化了传统车牌识别流程,提升了字符识别效果。
摘要由CSDN通过智能技术生成

传统车牌识别

传统的车牌识别需要先检测出车牌,检测出车牌后通过“像素映射”或者“联通区查找”的方法分割出单个的文字,然后单独识别每个文字。传统的车牌识别不仅繁琐,而且切割文字的效果也很难令人满意。因此,能不能绕开字符分割的问题,直接识别车牌中的字符呢?当然可以的。有两种方法:

  1. crnn+ctc
  2. 卷积only

两种方法都做了实现,源码已上传至github: 

车牌识别, 如果对你有帮助,给个star鼓励下,谢谢!

以下是该项目的简单介绍。

数据集

这个项目中,使用了自动生成训练和识别的车牌,因此,你需要寻找车牌数据集,不需要做任何数据处理,就能轻松愉快的完成车牌识别的训练与预测。

随机生成的车牌示例:

车牌1

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值