吴恩达机器学习之正则化

机器学习中在测试数据集上表现良好的能力被称为泛化,机器学习的目标是泛化误差足够低。
训练过程,主要有2个挑战。欠拟合,指模型不能在训练集上获得足够低的误差。过拟合,指训练误差和测试误差之间的差距过大,即训练集表现很好,但泛化能力较差。通常假设函数参数过多,易导致过拟合。下图是线性回归中欠拟合,过拟合例子。
样本在这里插入图片描述
数据集符合一元二次方程,如中间的图。但用直线拟合,就会出现左图欠拟合;用4次方程拟合,就会出现右图的过拟合。
因此,解决过拟合有2种方法,一是减少变量数据,但往往我们不容易确定要减少哪些变量,而且减少变量,可能会导致一部分信息丢失。另外一种方法是对代价函数正则化处理,使参数值(权重)较小,从而简化假设模型。
因此在正则化里,我们要做的事情,就是减小我们的代价函数(例子中是线性回归的代价函数)中所有的参数值,因为我们并不知道是哪一个或哪几个要去缩小。因此,我们需要修改代价函数,在其后面添加一项,从而收缩了每个参数。
对线性回归来说,其代价函数正则化公式如下:
在这里插入图片描述
方括号里加号后面的项即为正则化项。其中 λ 是正则化参数,是一个比较大的数,从而在最小化代价函数时,获得的假设函数参数值也较小。 λ 需要平衡两个目标,一是训练集拟合良好;二是保持参数值较小,防止过拟合。因此,选择一个合适的正则化参数很重要,有一些方法会自动调整λ。
之前的博文介绍了线性回归2种解法:梯度下降法与正规方程法,这里简要说明一下其正则化处理。
梯度下降法,如下:
在这里插入图片描述
其中,学习率后面是代价函数的偏导数项。
正规方程,如下:
在这里插入图片描述
第一个公式是未正则化解形式,第二个公式是正则化后解形式。未正则化,求解过程可能存在矩阵不可逆,即奇异矩阵,导致不收敛。但正则化,一定程度上可以避免这种现象出现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值