Papers with Code 2020 全年回顾

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Ross Taylor

编译:ronghuaiyang

导读

2020年Papers with Code 中最顶流的论文,代码和benchmark。

Papers with Code 中收集了各种机器学习的内容:论文,代码,结果,方便发现和比较。通过这些数据,我们可以了解ML社区中,今年哪些东西最有意思。下面我们总结了2020年最热门的带代码的论文、代码库和benchmark。

2020顶流论文

Tan等人的EfficientDet是2020年在Papers with Code上被访问最多的论文。
  1. EfficientDet: Scalable and Efficient Object Detection — Tan et al https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object

  2. Fixing the train-test resolution discrepancy — Touvron et al https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2

  3. ResNeSt: Split-Attention Networks — Zhang et al https://paperswithcode.com/paper/resnest-split-attention-networks

  4. Big Transfer (BiT) — Kolesnikov et al https://paperswithcode.com/paper/large-scale-learning-of-general-visual

  5. Object-Contextual Representations for Semantic Segmentation — Yuan et al https://paperswithcode.com/paper/object-contextual-representations-for

  6. Self-training with Noisy Student improves ImageNet classification — Xie et al https://paperswithcode.com/paper/self-training-with-noisy-student-improves

  7. YOLOv4: Optimal Speed and Accuracy of Object Detection — Bochkovskiy et al https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object

  8. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale — Dosovitskiy et al https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1

  9. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer — Raffel et al https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning

  10. Hierarchical Multi-Scale Attention for Semantic Segmentation — Tao et al https://paperswithcode.com/paper/hierarchical-multi-scale-attention-for

2020顶流代码库

Transformers是2020年在Papers with Code上被访问最多的代码库
  1. Transformers — Hugging Face — https://github.com/huggingface/transformers

  2. PyTorch Image Models — Ross Wightman — https://github.com/rwightman/pytorch-image-models

  3. Detectron2 — FAIR — https://github.com/facebookresearch/detectron2

  4. InsightFace — DeepInsight — https://github.com/deepinsight/insightface

  5. Imgclsmob — osmr — https://github.com/osmr/imgclsmob

  6. DarkNet — pjreddie — https://github.com/pjreddie/darknet

  7. PyTorchGAN — Erik Linder-Norén — https://github.com/eriklindernoren/PyTorch-GAN

  8. MMDetection — OpenMMLab — https://github.com/open-mmlab/mmdetection

  9. FairSeq — PyTorch — https://github.com/pytorch/fairseq

  10. Gluon CV — DMLC — https://github.com/dmlc/gluon-cv

2020顶流Benchmarks

ImageNet是2020年在Papers with Code上访问最多的benchmark
  1. ImageNet — Image Classification — https://paperswithcode.com/sota/image-classification-on-imagenet

  2. COCO — Object Detection / Instance Segmentation — https://paperswithcode.com/sota/object-detection-on-coco

  3. Cityscapes — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes

  4. CIFAR-10 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-10

  5. CIFAR-100 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-100

  6. PASCAL VOC 2012 — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012

  7. MPII Human Pose — Pose Estimation — https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose

  8. Market-1501 — Person Re-Identification — https://paperswithcode.com/sota/person-re-identification-on-market-1501

  9. MNIST — Image Classification — https://paperswithcode.com/sota/image-classification-on-mnist

  10. Human 3.6M — Human Pose Estimation -https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose

—END—

英文原文:https://medium.com/paperswithcode/papers-with-code-2020-review-938146ab9658

请长按或扫描二维码关注本公众号

喜欢的话,请给我个在看吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值