03导数

一、导数与微分

1. 导数的概念

定义: f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=\lim_{\Delta x \to 0}{\Delta y \over \Delta x}=\lim_{\Delta x \to 0} {f(x_0+ \Delta x) -f(x_0) \over \Delta x} f(x0)=limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)

f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim_{x \to x_0} {f(x)-f(x_0) \over x-x_0} f(x0)=limxx0xx0f(x)f(x0)

左导数: lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 \lim_{\Delta x \to 0^-}{\Delta y \over \Delta x}=\lim_{\Delta x \to 0^-} {f(x_0+ \Delta x) -f(x_0) \over \Delta x}=\lim_{x \to x_0^-} {f(x)-f(x_0) \over x-x_0} limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)=limxx0xx0f(x)f(x0)

右导数: lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 \lim_{\Delta x \to 0^+}{\Delta y \over \Delta x}=\lim_{\Delta x \to 0^+} {f(x_0+ \Delta x) -f(x_0) \over \Delta x}=\lim_{x \to x_0^+} {f(x)-f(x_0) \over x-x_0} limΔx0+ΔxΔy=limΔx0+Δxf(x0+Δx)f(x0)=limxx0+xx0f(x)f(x0)

可导 ⇔ \Leftrightarrow 左右导数存在且相等

区间上可导:

如果 y = f ( x ) y=f(x) y=f(x)在开区间 ( a , b ) (a,b) (a,b)内每一点都可导,则称 f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (a,b)内可导。

f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (a,b)内可导,且 f + ′ ( a ) f'_+(a) f+(a) f − ′ ( b ) f'_-(b) f(b)都存在,则称 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上可导。

2. 微分的概念

定义:设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一领域内有定义,如果函数的增量 Δ y = f ( x + Δ x ) − f ( x 0 ) \Delta y = f(x+ \Delta x)-f(x_0) Δy=f(x+Δx)f(x0)可以表示为:
Δ y = A Δ x + o ( Δ x ) ,   ( Δ x → 0 ) \Delta y=A \Delta x+o(\Delta x), \ (\Delta x \to 0) Δy=AΔx+o(Δx), (Δx0)
则称函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可微,称 A Δ x A \Delta x AΔx为微分,记为
d y = A Δ x dy= A \Delta x dy=AΔx
定理:函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0可微的充分必要条件 f ( x ) f(x) f(x)在点 x 0 x_0 x0
可导
,且有
d y = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy= f'(x_0) \Delta x = f'(x_0)dx dy=f(x0)Δx=f(x0)dx
在点x处,常记 d y = f ′ ( x ) d x dy = f'(x)dx dy=f(x)dx

【注1】导数不等于0 ⇒ \Rightarrow dy与 Δ x \Delta x Δx为同阶无穷小。

d y Δ x = f ′ ( x 0 ) Δ x Δ x = f ′ ( x 0 ) = 常 数 {dy \over \Delta x}={f'(x_0) \Delta x \over \Delta x }=f'(x_0)=常数 Δxdy=Δxf(x0)Δx=f(x0)=

【注2】在某些题目中, d y = d f ( x ) ∣ x = x 0 = f ′ ( x 0 ) d x = f ′ ( x 0 ) Δ x = A Δ x dy=df(x)|_{x=x_0}=f'(x_0)dx=f'(x_0) \Delta x=A \Delta x dy=df(x)x=x0=f(x0)dx=f(x0)Δx=AΔx

3. 导数与微分的几何意义

1)导数的几何意义:

在这里插入图片描述

导数 f ′ ( x 0 ) f'(x_0) f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)在点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))处切线的斜率。

  • 切斜方程

    y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=f'(x_0)(x-x_0) yf(x0)=f(x0)(xx0)

  • 法线方程

    y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=- {1 \over f'(x_0)}(x-x_0) yf(x0)=f(x0)1(xx0)

【注1】法线斜率与切线斜率为负导数关系。

【注2】导数就是斜率,即 tan ⁡ α \tan \alpha tanα lim ⁡ α → π 2 + k π = ∞ \lim_{\alpha \to {\pi \over2}+k\pi}= \infty limα2π+kπ=。所以极限为无穷大就是不存在极限,

即切线垂直于x轴。

在这里插入图片描述

例:

李正元p37例2.2,几何意义

(II)函数 y = f ( x ) y=f(x) y=f(x)在点 x = x 0 x=x_0 x=x0处连续,且有 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = ∞ \lim_{x \to x_0}{f(x)-f(x_0) \over x - x_0}=\infty limxx0xx0f(x)f(x0)=

x = x 0 x=x_0 x=x0 f ( x ) f(x) f(x)的不可导点,曲线 y = f ( x ) y=f(x) y=f(x)在点 M 0 ( x 0 , f ( x 0 ) ) M_0(x_0,f(x_0)) M0(x0,f(x0))处有垂直于x轴的切线 x = x 0 x=x_0 x=x0

在这里插入图片描述

2)微分的几何意义

Δ y \Delta y Δy是曲线上的改变量, d y dy dy是切线上的该变量。 d y ≈ Δ y dy \approx \Delta y dyΔy

Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0+ \Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)

4. 连续、可导、可微之间的关系

在这里插入图片描述

连续可导

连续 ⟶̸ \not \longrightarrow 可导

可导即光滑。 ∣ x ∣ |x| x ( 0 , 0 ) (0,0) (0,0)点连续,但是在 ( 0 , 0 ) (0,0) (0,0)点不可导。

f − ′ ( 0 ) = − 1 f + ′ ( 0 ) = 1 f'_-(0)=-1 \\ f'_+(0)=1 f(0)=1f+(0)=1

在这里插入图片描述

【注】导数的几何意义是切线的斜率,左导数的几何意义是左切线的斜率,右导数的几何意义是右切线的斜率。

可导 ⟶ \longrightarrow 连续

1.在这里插入图片描述

一阶可导,推不出一阶导函数连续,也推不出一阶导函数有极限。

【例】 f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases} x^2 \sin {1 \over x}, & x \neq 0 \\ 0, & x=0 \end{cases} f(x)={x2sinx1,0,x=0x=0,证1) f ( x ) f(x) f(x)处处可导;2) lim ⁡ x → 0 f ‘ ( x ) \lim_{x \to 0}f‘(x) limx0f(x)不存在。

证:

1) x ≠ 0 , f ′ ( x ) = 2 x sin ⁡ 1 x − cos ⁡ 1 x x \neq 0, f'(x)=2x \sin {1 \over x}- \cos {1 \over x} x=0,f(x)=2xsinx1cosx1

x = 0 , f ′ ( x ) = lim ⁡ x → 0 x 2 sin ⁡ 1 x − 0 x − 0 = 0 x=0, f'(x)= \lim_{x \to 0}{x^2 \sin {1 \over x}-0 \over x-0}=0 x=0,f(x)=limx0x0x2sinx10=0

2) lim ⁡ x → 0 f ′ ( x ) = lim ⁡ x → 0 ( 2 x sin ⁡ 1 x − cos ⁡ 1 x ) \lim_{x \to 0}f'(x)= \lim_{x \to 0}(2x \sin{1 \over x}- \cos {1 \over x}) limx0f(x)=limx0(2xsinx1cosx1)

其中, lim ⁡ x → 0 2 x sin ⁡ 1 x \lim_{x \to 0}2x \sin {1 \over x} limx02xsinx1存在, lim ⁡ x → 0 cos ⁡ 1 x \lim_{x \to 0} \cos {1 \over x} limx0cosx1不存在

所以, lim ⁡ x → 0 f ′ ( x ) = 不 存 在 \lim_{x \to 0}f'(x)=不存在 limx0f(x)=

2.在这里插入图片描述

【注】一点可导,只能推出在这一点连续。

f ( x ) = { 0 , 有 理 数 x 2 , 无 理 数 f(x)= \begin{cases}0,&有理数 \\ x^2,&无理数 \end{cases} f(x)={0,x2,

此函数仅在 x = 0 x=0 x=0这一点连续,可导。在0点确实连续,但是在0点任何一个领域里面都不能

推出连续,也推不出来0点任何领域内可导。

【总结】

抽象函数求极限使用洛必达法则原则:

1) f ( x )   n f(x) \ n f(x) n阶可导,用洛必达法则最多只能用到出现 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n1)(x)阶导数,而不能出现n阶。

为什么不能用到出现n阶,因为洛必达法则是需要后面极限存在,一阶可导不能保证一阶导

函数有极限,n阶可导也不能保证n阶导函数有极限,所以不能求到n阶。但是如果求到(n-1)

阶,n阶导数就是(n-1)阶导函数的导数,所以n阶可导能推出(n-1)阶导函数连续。

  • n阶导数就是(n-1)阶导函数的导数,所以n阶可导能推出(n-1)阶导函数连续。

    4阶可导意思就是能导4次,3阶导函数就是一个函数导了3次后得到的函数,因为函数本

    身4阶可导,所以3阶导函数还可以导一次,也就是说三阶导函数可导,因为可导能推出

    连续,所以3阶导函数连续。

2)如果题目中有 f ( x ) f(x) f(x)有n阶连续导数(n阶导数不但存在,而且还连续),这个时候就可以

用到出现 f ( n ) ( x ) f^{(n)}(x) f(n)(x)阶导数。

如果用到n阶或者(n-1)阶还没有求出来,最后一步一般是用导数定义来求。

【注】可导能推出连续,不连续一定不可导。

在某一点 x 0 x_0 x0处函数 f ( x ) f(x) f(x) 的导数为 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_{0}}{\frac{{f(x)-f(x_{0})}}{x-x_{0}}} limxx0xx0f(x)f(x0) , 若函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导,则该极

限一定存在,故有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0}f(x)=f(x_0) limxx0f(x)=f(x0),则函数必然连续。 可知,函数可导必连续。

反之,当函数不连续时即 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim_{x \to x_0}f(x) \neq f(x_0) limxx0f(x)=f(x0),导数 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = ∞ \lim_{x \to x_{0}}{\frac{{f(x)-f(x_{0})}}{x-x_{0}}}=\infty limxx0xx0f(x)f(x0)= 即极限不

存在,故不可导。

可得结论:在函数的某一点处,若不连续则不可导。

分析:

如果可导,则极限一定存在,根据有理运算法则(如下),极限存在,分母趋向于0,则分

子以一定趋向于0,即函数值等于极限值 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0}f(x)=f(x_0) limxx0f(x)=f(x0),所以可导一定能推处连

续。

l i m f ( x ) g ( x ) 存 在 , l i m g ( x ) = 0 ⇒ l i m f ( x ) = 0 ; 即 : 商 存 在 , 分 母 趋 向 于 0 , 分 子 一 定 趋 向 于 0 \mathrm{lim}{f(x) \over g(x)}存在, \mathrm{lim}g(x)=0 \Rightarrow \mathrm{lim}f(x)=0;\\ 即:商存在,分母趋向于0,分子一定趋向于0 limg(x)f(x),limg(x)=0limf(x)=0;00

不连续时,分母的函数值不等于极限值,而分子趋向于0,分母不趋向于0,极限不存在,

所以不连续一定不可导。

例:

李正元p37,例2.1(2) 若 x ∈ ( x 0 − δ , x 0 + δ ) , x ≠ x 0 时 , f ( x ) = g ( x ) , 则 f ( x ) 和 g ( x ) 在 x = x 0 处 有 相 同 的 可 导 性 。 若x \in (x_0- \delta, x_0+ \delta),x \neq x_0时,f(x)=g(x),则f(x)和g(x)在x=x_0处有相同的可导性。 x(x0δ,x0+δ),x=x0f(x)=g(x),f(x)g(x)x=x0×

不正确,例, f ( x ) = x 2 , g ( x ) = { x 2 , x ≠ 0 1 , x = 0 f(x)=x^2, g(x)=\begin{cases}x^2,& x\neq 0 \\ 1, & x=0 \end{cases} f(x)=x2,g(x)={x2,1,x=0x=0

显然,当 x ≠ 0 x \neq 0 x=0 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),但 f ( x ) f(x) f(x) x = 0 x=0 x=0处可导,而 g ( x ) g(x) g(x) x = 0 x=0 x=0处不可导,因为

g ( x ) g(x) g(x) x = 0 x=0 x=0处不连续。

可导可微

可导 ⟶ \longrightarrow 可微

在这里插入图片描述

【注】导函数在某点处连续:导函数在那点的极限等于那点的导数值。

二、导数的公式及求导法则

1. 基本公式

在这里插入图片描述

2. 求导法则

(1)有理运算法则

在这里插入图片描述

(2)复合函数求导法

u = φ ( x ) , y = f ( u ) u= \varphi(x),y=f(u) u=φ(x),y=f(u)可导,则 y = f [ φ ( x ) ] y=f[\varphi(x)] y=f[φ(x)]

d y d x = d y d u ⋅ d u d x = f ′ ( u ) φ ′ ( x ) {dy \over dx}={dy \over du}·{du \over dx}=f'(u) \varphi'(x) dxdy=dudydxdu=f(u)φ(x)

【注】

u = φ ( x ) u= \varphi (x) u=φ(x) x 0 x_0 x0可导, y = f ( u ) y=f(u) y=f(u) u 0 = φ ( x 0 ) u_0= \varphi(x_0) u0=φ(x0)可导,则复合函数就在 x 0 x_0 x0可导。

d y d x ∣ x = x 0 = f ′ ( u 0 ) φ ′ ( x 0 ) {dy \over dx}|_{x=x_0}=f'(u_0) \varphi'(x_0) dxdyx=x0=f(u0)φ(x0)

所以一个复合函数,内层函数在 x 0 x_0 x0可导,外层函数在相应点可导,只要 f ′ ( u 0 ) , f'(u_0), f(u0), φ ′ ( x 0 ) \varphi'(x_0) φ(x0)这两

点导数存在,复合函数在这点就有导数。

(3)隐函数求导法

F ( x , y ) = 0 F(x,y)=0 F(x,y)=0

为求出 y ′ y' y,可在方程两边对x求导,之后从中解出 y ′ y' y

【注】求隐函数的导数时,求解过程中若能用方程将结果化简时应尽量化简。

【例】李正元p45例2.12(I)

e x + y = y e^{x+y}=y ex+y=y确定 y = f ( x ) y=f(x) y=f(x),求 y ′ , y ′ ′ y',y'' y,y

解:

注意y是x的函数,将方程两端对x求导

e x + y ( 1 + y ′ ) = y ′ e^{x+y}(1+y')=y' ex+y(1+y)=y,即 y ′ = y 1 − y = y − 1 + 1 1 − y = − ( − y + 1 − 1 ) 1 − y = − ( 1 − y ) + 1 1 − y = − 1 + 1 1 − y y'={y \over 1-y}={y-1+1 \over 1-y}={-(-y+1-1) \over 1-y}={-(1-y)+1 \over 1-y}=-1+{1 \over 1-y} y=1yy=1yy1+1=1y(y+11)=1y(1y)+1=1+1y1

(这里用方程 e x + y = y e^{x+y}=y ex+y=y化简)

再将y’的表达式对x求导得

y ′ ′ = d 2 y d x 2 = ( − 1 + 1 1 − y ) y ′ d y d x = y ( 1 = y ) 3 y''={d^2y \over dx^2}=(-1+{1 \over 1-y})_y^{'}{dy \over dx}={y \over (1=y)^3} y=dx2d2y=(1+1y1)ydxdy=(1=y)3y

(4)反函数的导数

y = f ( x ) y=f(x) y=f(x)在某区间内可导,且 f ′ ( x ) ≠ 0 f'(x)\neq 0 f(x)=0,则其反函数 x = φ ( y ) x = \varphi (y) x=φ(y)在对应区间内也可导,


φ ′ ( y ) = 1 f ′ ( x ) ; d x d y = 1 d y d x \varphi'(y)={1 \over f'(x)};\quad {dx \over dy}={1 \over {dy \over dx}} φ(y)=f(x)1;dydx=dxdy1

φ ′ ′ ( y ) = − f ′ ′ ( x ) f ′ 2 ( x ) ⋅ d x d y = − f ′ ′ ( x ) f ′ 2 ( x ) ⋅ 1 f ′ ( x ) = − f ′ ′ ( x ) f ′ 3 ( x ) \varphi ''(y)=-{f''(x) \over f^{'2}(x)}·{dx \over dy}=-{f''(x) \over f^{'2}(x)}·{1 \over f'(x)}=-{f''(x) \over f^{'3}(x)} φ(y)=f2(x)f(x)dydx=f2(x)f(x)f(x)1=f3(x)f(x)

【注】反函数的高阶导数:先对x求,再乘上x对y的导数 d x d y {dx \over dy} dydx

iShot2020-08-11下午03.22.30

y = f ( x ) y=f(x) y=f(x) x = φ ( y ) x = \varphi (y) x=φ(y)表示的是一条曲线,这两导数表示同一条曲线在这点切线分别和x轴y

轴夹角的tan。一条直线它跟x轴和y轴的两个夹角刚好相加等于 π 2 \pi \over 2 2π,所以它两tan是倒数关

系。

【例】证明: ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'={1 \over \sqrt{1-x^2}} (arcsinx)=1x2 1

证: y = arcsin ⁡ x y= \arcsin x y=arcsinx反函数是 x = sin ⁡ y y ∈ ( − π 2 , π 2 ) x= \sin y \quad y \in(- {\pi \over 2},{\pi \over 2}) x=sinyy(2π,2π)

d y d x = 1 d x d y = 1 cos ⁡ y = 1 1 − sin ⁡ 2 x = 1 1 − x 2 {dy \over dx}= {1 \over {dx \over dy}}={1 \over \cos y}={1 \over \sqrt{1 - \sin^2 x} }={1 \over \sqrt{1-x^2}} dxdy=dydx1=cosy1=1sin2x 1=1x2 1

(5)参数方程求导法

y = y ( x ) y=y(x) y=y(x)是由参数方程 { x = φ ( t ) y = ψ ( t ) \begin{cases} x= \varphi(t) \\y= \psi(t)\end{cases} {x=φ(t)y=ψ(t) ( α < t < β ) (\alpha <t < \beta) (α<t<β)确定的函数,则

1)若 φ ( t ) \varphi (t) φ(t) ψ ( t ) \psi (t) ψ(t)都可导,且 φ ′ ( t ) ≠ 0 \varphi'(t) \neq 0 φ(t)=0,则
d y d x = ψ ′ ( t ) φ ′ ( t ) {dy \over dx}={ \psi' (t) \over \varphi'(t)} dxdy=φ(t)ψ(t)

x ( t ) x(t) x(t)可导,且 φ ′ ( t ) ≠ 0 \varphi'(t) \neq 0 φ(t)=0得, x = φ ( t ) x=\varphi(t) x=φ(t)有反函数,其反函数 t = φ − 1 ( x ) t= \varphi^{-1}(x) t=φ1(x),根据反函数存在

定理,它就可导。
d t d x = 1 d x d t = 1 φ ′ ( t ) {dt \over dx}={1 \over {dx \over dt}}={1 \over \varphi'(t)} dxdt=dtdx1=φ(t)1

t又是x的函数( t = φ − 1 ( x ) t= \varphi^{-1}(x) t=φ1(x)),y又是t的函数( y = ψ ( t ) y= \psi(t) y=ψ(t)),所以y是x的函数 y = y ( x ) y=y(x) y=y(x)
d y d x = d y d t ⋅ d t d x = ψ ′ ( t ) φ ′ ( t ) {dy \over dx}={dy \over dt}·{dt \over dx}={\psi'(t) \over \varphi'(t)} dxdy=dtdydxdt=φ(t)ψ(t)

反函数的导数存在的条件

不一定在定义域内严格单调,只需要函数值和自变量一一对应后即可,简单的说,只要

能有反函数,这个性质就成立。

而要反函数的要求,并不需要函数是严格单调的。

例如函数f(x)=1/x,这个函数在定义域(-∞,0)∪(0,+∞)里面不是单调函数,只

是在两个区间内各自单调。但是这个定义域内不单调的函数,有反函数,其反函数的导

数,也是原函数导数的倒数。

【注】有反函数,不一定单调。

函数可导且导数不为0,能判断其有反函数吗?

可导且导数不为0,则其导数恒为正或恒为负,而不可能是有正有负(否则由连续性则

必有导数为0的点)。

所以函数都是单调的,因此具有反函数。

【注】单调函数一定有反函数。

2)若 φ ( t ) \varphi(t) φ(t) ψ ( t ) \psi (t) ψ(t)二阶可导,且 φ ′ ( t ) ≠ 0 \varphi'(t) \neq 0 φ(t)=0,则
d 2 y d x 2 = d d t ( ψ ′ ( t ) φ ′ ( t ) ) ⋅ d t d x = d d t ( ψ ′ ( t ) φ ′ ( t ) ) ⋅ 1 φ ′ ( t ) = ψ ′ ′ ( t ) φ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) φ ′ 3 ( t ) {d^2y \over dx^2}={d \over dt}({\psi'(t) \over \varphi'(t)})·{dt \over dx}={d \over dt}({\psi'(t) \over \varphi'(t)})·{1 \over \varphi'(t)}={\psi''(t)\varphi'(t)-\varphi''(t)\psi'(t) \over \varphi^{'3}(t)} dx2d2y=dtd(φ(t)ψ(t))dxdt=dtd(φ(t)ψ(t))φ(t)1=φ3(t)ψ(t)φ(t)φ(t)ψ(t)

6)对数求导法

如果 y = y ( x ) y=y(x) y=y(x)的表达式由多个因式的乘除、乘幂构成,或是幂指函数的形式,则先将函数

取对数,然后两边对x求导。

【注】奇函数与周期函数的导数性质

在这里插入图片描述

设 f ( x ) 可 导 , 以 T 为 周 期 ⇒ f ′ ( x ) 也 以 T 为 周 期 。 设f(x)可导,以T为周期 \Rightarrow f'(x)也以T为周期。 f(x)Tf(x)T

三、高阶导数

1. 二阶导函数

定义:函数 y = f ( x ) y=f(x) y=f(x)的导数 y ′ = f ′ ( x ) y'=f'(x) y=f(x),仍是x的函数,把导函数 y ′ = f ′ ( x ) y'=f'(x) y=f(x)的导数,叫作

y = f ( x ) y=f(x) y=f(x)的二阶导数,记作 y ′ ′ y'' y f ′ ′ ( x ) f''(x) f(x) d 2 y d x 2 d^2y \over dx^2 dx2d2y,即 y ′ ′ = ( y ′ ) ′ y''=(y')' y=(y) d 2 y d x 2 = d d x ( d y d x ) {d^2y \over dx^2}={d \over dx}({dy \over dx}) dx2d2y=dxd(dxdy)
f ′ ′ ( x 0 ) = lim ⁡ Δ x → 0 f ′ ( x 0 + Δ x ) − f ′ ( x 0 ) Δ x f''(x_0)= \lim_{\Delta x\to 0} {f'(x_0+ \Delta x)-f'(x_0) \over \Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0)

【注】二阶导数 y ′ ′ = ( y ′ ) ′ = d ( y ′ ) ⋅ d y d x y''=(y')'=d(y')·{dy \over dx} y=(y)=d(y)dxdy

即,先对y求导,然后再y对x求导。

2. n阶导数

定义:一般地,函数 y = f ( x ) y=f(x) y=f(x)的n阶导数为 y ( n ) = [ f ( n − 1 ) ( x ) ] ′ y^{(n)}=[f^{(n-1)}(x)]' y(n)=[f(n1)(x)],也可记为 f ( n ) ( x ) f^{(n)}(x) f(n)(x) d n y d x n {d^ny \over dx^n} dxndny

即,n阶导数就是(n-1)阶导函数的导数。
在这里插入图片描述

【注】如果函数 f ( x ) f(x) f(x)在点x处n阶可导,则在点x的某领域内 f ( x ) f(x) f(x)必定具有一切低于n阶的导数。

就是在 x 0 x_0 x0这一点,如果n阶导数存在的话,那这个时候在 x 0 x_0 x0这一点一定有一个领域(不管多

么小一定有),在这个领域里面,低于n阶导数都有。换句话说,那它的(n-1)阶,(n-

2)阶,一直到1阶导数,不仅仅在这点有,在这点的领域里面也一定有。

原因: x 0 x_0 x0点的n阶导数( f ( n ) ( x 0 ) f^{(n)}(x_0) f(n)(x0))是用(n-1)阶导函数来定义的,它不仅用到 x 0 x_0 x0这一点

的(n-1)阶导数,它还用到了 x 0 + Δ x x_0+ \Delta x x0+Δx点处的(n-1)阶导数, x 0 + Δ x x_0+ \Delta x x0+Δx就是这个领域里

面。所以由这个定义可以知道, x 0 x_0 x0点的n阶导数要存在,那(n-1)阶导数不但这一点要存

在,领近( x 0 + Δ x x_0+ \Delta x x0+Δx)也要存在,所以(n-1)阶导数要在 x 0 x_0 x0领域里面存在。既然(n-1)

阶在领域里面存在,那(n-2)阶、(n-3)阶,一直到1阶都在这个领域里面存在。

具体例子:如果这个函数在 x 0 x_0 x0处二阶导数存在( f ′ ′ ( x 0 ) f''(x_0) f(x0)),那我就可以推出在这点领域里

面一阶( f ′ ( x ) f'(x) f(x))就都存在,不仅仅在那一点一阶存在,在领域里面一阶都存在。

3.常用公式

在这里插入图片描述

【注1】

P n m = A n m = n ! ( n − m ) ! P_n^m=A_n^m={n! \over (n-m)!} Pnm=Anm=(nm)!n!

C n m = A n m m ! = n ! m ! ( n − m ) ! C_n^m={A_n^m \over m!}={n! \over m!(n-m)!} Cnm=m!Anm=m!(nm)!n!

C n m = C n n − m ( C 3 1 = C 3 2 ) , 特 别 地 C n 0 = C n n = 1 ; C n 1 = n C_n^m=C_n^{n-m}(C_3^1=C_3^2),特别地C_n^0=C_n^n=1;C_n^1=n Cnm=Cnnm(C31=C32),Cn0=Cnn=1;Cn1=n

【注2】 y = sin ⁡ ( a x + b ) ⇒ y ( n ) = a n sin ⁡ ( a x + b + n π 2 ) y= \sin (ax+b) \Rightarrow y^{(n)}=a^n \sin (ax+b+{n\pi \over 2}) y=sin(ax+b)y(n)=ansin(ax+b+2nπ)

[ sin ⁡ ( a x + b ) ] ( n ) = a n sin ⁡ ( a x + b + n π 2 ) [\sin (ax +b)]^{(n)}=a^n \sin (ax+b+{n\pi \over 2}) [sin(ax+b)](n)=ansin(ax+b+2nπ)

[ cos ⁡ ( a x + b ) ] ( n ) = a n cos ⁡ ( a x + b + n π 2 ) [\cos (ax +b)]^{(n)}=a^n \cos (ax+b+{n\pi \over 2}) [cos(ax+b)](n)=ancos(ax+b+2nπ)

【计算】(1)直接用公式;(2)求出一阶二阶然后归纳。

(3)利用泰勒公式(适合求具体点上的n阶导数)

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( x − x 0 ) n f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+o\left(x-x_{0}\right)^{n} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+o(xx0)n

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\cdots+\frac{f^{(n)}(0)}{n !} x^{n}+o\left(x^{n}\right) f(x)=f(0)+f(0)x+2!f(0)x2++n!f(n)(0)xn+o(xn)

求哪一点的n阶导数,就要写出那一点的泰勒公式。

在n次项的系数里面找 a n = f ( n ) ( x 0 ) n ! a_n= {f^{(n)}(x_0) \over n!} an=n!f(n)(x0),则 f ( n ) ( x 0 ) = a n n ! f^{(n)}(x_0)=a_n n! f(n)(x0)=ann!

但是一般知道的都是在0点的泰勒公式。如。

l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 n x n + o ( x n ) ln(1+x)=x-{1 \over 2}x^2+{1 \over 3}x^3- \cdots + {(-1)^{n-1} \over n}x^n+o(x^n) ln(1+x)=x21x2+31x3+n(1)n1xn+o(xn)

a n = ( − 1 ) n − 1 n = f ( n ) ( 0 ) n ! a_n= {(-1)^{n-1} \over n}={f^{(n)}(0) \over n!} an=n(1)n1=n!f(n)(0)

f ( n ) ( 0 ) = ( − 1 ) n − 1 n n ! f^{(n)}(0)={(-1)^{n-1} \over n}n! f(n)(0)=n(1)n1n

f ( x ) = x ln ⁡ ( 1 + x ) f(x)=x \ln (1+x) f(x)=xln(1+x),这个函数在0点的n阶导数等于?

f ( x ) = x ln ⁡ ( 1 + x ) = x ( x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 n x n ) + o ( x n ) f(x)= x \ln (1+x)=x(x-{1 \over 2}x^2+{1 \over 3}x^3- \cdots + {(-1)^{n-1} \over n}x^n)+o(x^n) f(x)=xln(1+x)=x(x21x2+31x3+n(1)n1xn)+o(xn)

= x 2 − 1 2 x 3 + 1 3 x 4 − ⋯ + ( − 1 ) n − 1 n x n + 1 + o ( x n ) =x^2-{1 \over 2}x^3+{1 \over 3}x^4- \cdots + {(-1)^{n-1} \over n}x^{n+1}+o(x^n) =x221x3+31x4+n(1)n1xn+1+o(xn)

要找n阶导数,要在x的n次项的系数里面找,所以 a n = ( − 1 ) n − 2 n − 1 = ( − 1 ) n n − 1 a_n={(-1)^{n-2} \over n-1}={(-1)^n \over n-1} an=n1(1)n2=n1(1)n

因为 ( − 1 ) n − 2 = ( − 1 ) n (-1)^{n-2}=(-1)^n (1)n2=(1)n,如 ( − 1 ) 4 = ( − 1 ) 2 , ( − 1 ) 5 = ( − 1 ) 3 (-1)^4=(-1)^2, \quad (-1)^5=(-1)^3 (1)4=(1)2,(1)5=(1)3

所以, f ( n ) ( 0 ) = ( − 1 ) n n − 1 n ! f^{(n)}(0)={(-1)^n \over n-1} n! f(n)(0)=n1(1)nn!

f ( x ) = ( x 2 + 1 ) ln ⁡ ( 1 + x ) f(x)=(x^2+1) \ln (1+x) f(x)=(x2+1)ln(1+x),则,分别写出 x 2 ln ⁡ ( 1 + x ) x^2 \ln (1+x) x2ln(1+x)和$ \ln (1+x)$的泰勒公式,然后

将他们的x的n次项的系数相加,最后乘以 n ! n! n!

若问 f ( x ) = ln ⁡ ( 1 + x ) f(x)= \ln(1+x) f(x)=ln(1+x)在1那点的n阶导数。

f ( x ) = ln ⁡ [ 2 + ( x − 1 ) ] = ln ⁡ [ 2 ( 1 + x − 1 2 ) ] = ln ⁡ 2 + ln ⁡ [ 1 + x − 1 2 ] f(x)= \ln [2+(x-1)]= \ln [2(1+{x-1 \over2})]=\ln 2 + \ln[1+{x-1 \over 2}] f(x)=ln[2+(x1)]=ln[2(1+2x1)]=ln2+ln[1+2x1]

可以用 ln ⁡ ( 1 + x ) \ln (1+x) ln(1+x)的泰勒公式,将所有的x都换成 x − 1 2 {x-1} \over 2 2x1

l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 n x n + o ( x n ) ln(1+x)=x-{1 \over 2}x^2+{1 \over 3}x^3- \cdots + {(-1)^{n-1} \over n}x^n+o(x^n) ln(1+x)=x21x2+31x3+n(1)n1xn+o(xn)

则, ( − 1 ) n − 1 n ( x − 1 2 ) n = ( − 1 ) ( n − 1 ) n 2 n ( x − 1 ) n {(-1)^{n-1} \over n}({x-1 \over2})^n={(-1)^{(n-1)} \over n2^n}(x-1)^n n(1)n1(2x1)n=n2n(1)(n1)(x1)n

要求的是 f ( n ) ( 1 ) f^{(n)}(1) f(n)(1) ( x − 1 ) n (x-1)^n (x1)n的系数里面找。

则, f ( n ) ( 1 ) = ( − 1 ) ( n − 1 ) n 2 n f^{(n)}(1)={(-1)^{(n-1)} \over n2^n} f(n)(1)=n2n(1)(n1) n!

易错点

  1. 求分段函数的左右导数的时候,分段点定义在哪里就代到哪里计算。
  2. 分段函数等号在哪边,可以直接求导带入计算左(右)导数。

注意点

  1. 导函数在某点连续,导函数在那点的极限等于那点的导数值。如, lim ⁡ x → 0 f ′ ( x ) = f ′ ( 0 ) \lim_{x \to 0}f'(x)=f'(0) limx0f(x)=f(0)

  2. 求导的时候要注意如果在某一定没有定义,那在这点要用导数定义就极限。

    李正元42例2.7(II)

    y = x 2 3 sin ⁡ x y=\sqrt[3]{x^2} \sin x y=3x2 sinx

    解:当 x ≠ 0 x \neq 0 x=0时,由求导法则得 f ′ ( x ) = 2 3 x 3 sin ⁡ x + x 2 3 cos ⁡ x f'(x)={2 \over 3 \sqrt[3]{x}}\sin x + \sqrt[3]{x^2} \cos x f(x)=33x 2sinx+3x2 cosx

    x = 0 x=0 x=0时,由导数定义得, f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 x 2 3 ⋅ sin ⁡ x x = 0 f'(0)=\lim_{x \to 0}{f(x)-f(0) \over x-0}=\lim_{x \to 0} \sqrt[3]{x^2}·{\sin x \over x}=0 f(0)=limx0x0f(x)f(0)=limx03x2 xsinx=0

补充知识点

  1. lim ⁡ x → x 0 g ( x ) = 0 ⇔ lim ⁡ x → x 0 ∣ g ( x ) ∣ = 0 \lim_{x \to x_0}g(x)=0 \Leftrightarrow \lim_{x \to x_0}|g(x)|=0 limxx0g(x)=0limxx0g(x)=0

    • f ( x 0 ) ≠ 0 f(x_0)\neq 0 f(x0)=0 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0连续,则 f ( x 0 ) 在 x 0 可 导 ⇔ ∣ f ( x 0 ) ∣ 在 x 0 可 导 f(x_0)在x_0可导 \Leftrightarrow |f(x_0)|在x_0可导 f(x0)x0f(x0)x0

    • f ( x 0 ) f(x_0) f(x0)在点 x = x 0 x=x_0 x=x0处可导,且 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0,则 f ′ ( x 0 ) = 0 ⇔ ∣ f ( x 0 ) ∣ 在 x 0 可 导 f'(x_0)=0 \Leftrightarrow |f(x_0)|在x_0可导 f(x0)=0f(x0)x0

      【分析】按定义 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0可导 ⇔ lim ⁡ x → x 0 ∣ f ( x ) ∣ − ∣ f ( x 0 ) ∣ x − x 0 = lim ⁡ x → x 0 ∣ f ( x ) ∣ x − x 0 \Leftrightarrow \lim_{x \to x_0}{|f(x)|-|f(x_0)| \over x-x_0}=\lim_{x \to x_0}{|f(x)| \over x -x_0} limxx0xx0f(x)f(x0)=limxx0xx0f(x)存在

      lim ⁡ x → x 0 + ∣ f ( x ) ∣ x − x 0 ( ≥ 0 ) , lim ⁡ x → x 0 − ∣ f ( x ) ∣ x − x 0 ( ≤ 0 ) \lim_{x \to x_0^+}{|f(x)| \over x-x_0}(\geq 0),\lim_{x \to x_0^-}{|f(x)| \over x-x_0}( \leq 0) limxx0+xx0f(x)(0),limxx0xx0f(x)(0)均存在且相等。

      ⇔ lim ⁡ x → x 0 ∣ f ( x ) ∣ x − x 0 = 0 \Leftrightarrow \lim_{x \to x_0}{|f(x)| \over x -x_0}=0 limxx0xx0f(x)=0

      ⇔ lim ⁡ x → x 0 ∣ f ( x ) − f ( x 0 ) ∣ ∣ x − x 0 ∣ = 0 \Leftrightarrow \lim_{x \to x_0}{|f(x)-f(x_0)| \over |x-x_0|}=0 limxx0xx0f(x)f(x0)=0

      ⇔ lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = f ′ ( x 0 ) = 0 \Leftrightarrow \lim_{x \to x_0}{f(x)-f(x_0) \over x-x_0}=f'(x_0)=0 limxx0xx0f(x)f(x0)=f(x0)=0

  2. g ( x ) g(x) g(x)在点 x = a x=a x=a可导,即 g ′ ( a ) g'(a) g(a)存在, φ ( x ) \varphi (x) φ(x) x = a x=a x=a连续而不可导,则

    g ( x ) φ ( x ) 在 x = a 处 { 不 可 导 , 若 g ( x ) ≠ 0 可 导 且 导 函 数 为 g ′ ( a ) φ ( a ) , 若 g ( x ) = 0 g(x) \varphi(x)在x=a处 \begin{cases}不可导, & 若g(x) \neq 0 \\可导且导函数为g'(a) \varphi(a), &若g(x)=0 \end{cases} g(x)φ(x)x=a{,g(a)φ(a),g(x)=0g(x)=0

    【李正元p52例2.24】

    F ( x ) = g ( x ) φ ( x ) F(x)=g(x)\varphi(x) F(x)=g(x)φ(x) φ ( x ) \varphi(x) φ(x) x = a x=a x=a连续但不可导,又 g ′ ( a ) g'(a) g(a)存在,则 g ( a ) = 0 g(a)=0 g(a)=0 F ( x ) F(x) F(x) x = a x=a x=a可导的(充分必要条件)。

    【分析】

    g ( a ) = 0 g(a)=0 g(a)=0,按定义考察

    F ( x ) − F ( a ) x − a = g ( x ) φ ( x ) − g ( a ) φ ( a ) x − a = g ( x ) − g ( a ) x − a φ ( x ) {F(x)-F(a) \over x-a}={g(x) \varphi(x)-g(a)\varphi(a) \over x-a}={g(x)-g(a) \over x-a}\varphi(x) xaF(x)F(a)=xag(x)φ(x)g(a)φ(a)=xag(x)g(a)φ(x)

    lim ⁡ x → a F ( x ) − F ( a ) x − a = lim ⁡ x → a g ( x ) − g ( a ) x − a lim ⁡ x → a φ ( x ) = g ′ ( a ) φ ( a ) \lim_{x \to a}{F(x)-F(a) \over x-a}=\lim_{x \to a}{g(x)-g(a) \over x-a} \lim_{x \to a}\varphi(x)=g'(a) \varphi(a) limxaxaF(x)F(a)=limxaxag(x)g(a)limxaφ(x)=g(a)φ(a)

    F ′ ( a ) = g ′ ( a ) φ ( a ) F'(a)=g'(a)\varphi(a) F(a)=g(a)φ(a)

解题技巧

  1. 看到表达式由多个因式的乘除、乘幂构成,或是幂指函数的形式,则先将函数

    取对数,然后两边对x求导。

区分

  1. 复合函数求导和二阶导数
  • 复合函数求导

u = φ ( x ) , y = f ( u ) u= \varphi(x),y=f(u) u=φ(x),y=f(u)可导,则 y = f [ φ ( x ) ] y=f[\varphi(x)] y=f[φ(x)]

d y d x = d y d u ⋅ d u d x = f ′ ( u ) φ ′ ( x ) {dy \over dx}={dy \over du}·{du \over dx}=f'(u) \varphi'(x) dxdy=dudydxdu=f(u)φ(x)

  • 二阶导数

d 2 y d x 2 = d d x ( d y d x ) {d^2y \over dx^2}={d \over dx}({dy \over dx}) dx2d2y=dxd(dxdy)

注意点

  1. ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) ({u \over v})'={u'v-uv' \over v^2}\quad (v \neq 0) (vu)=v2uvuv(v=0)

注意:分子先求导

  1. 求分段函数的导数时,除了分界点处的导数用导数定义求之外,其余点仍按初等函数的

    求导公式即可求得。

  2. 分段函数在分界点X1点求导,需要先证明在X1点的连续性吗?为什么?

首先你要记住:可导必连续,连续不一定可导。要对X1求导就先用极限证明连续,在X1

点的极限值等于X1的函数值则连续,就可以用求导公式求导了。

【注】只有证明了连续,才能用求导公式求出原函数的导数。

  1. 函数不连续一定不可导吗?

    是的。

    分析:

    在某一点 x 0 x_0 x0处函数 f ( x ) f(x) f(x)的导数为 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_0}{f(x)-f(x_0) \over x - x_0} limxx0xx0f(x)f(x0),若函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导,则该极

    限一定存在,故有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0}f(x)=f(x_0) limxx0f(x)=f(x0),则函数必然连续。可知,函数可导必连续。

    反之,当函数不连续时即 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim_{x \to x_0}f(x) \neq f(x_0) limxx0f(x)=f(x0),导数 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = ∞ \lim_{x \to x_0} {f(x)-f(x_0) \over x - x_0}=\infty limxx0xx0f(x)f(x0)=即极限

    不存在,故不可导。

结论: 在函数的某一点处,若不连续则不可导。

  1. 函数在某点可导则函数在某点连续。

  2. 在某点的极限值等于函数值即可证函数在这点连续。

  3. 一阶可导:函数可以求一阶导数,但求出的导数可能连续也可能不连续。

一阶连续导数:函数可求一阶导数,且导数连续。

  1. 在求过某点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的切线的时候,要先验证该点是否在曲线上。

  2. 曲线方程形如 x 2 a 2 − y 2 b 2 = 1 {x^2 \over a^2}-{y^2 \over b^2}=1 a2x2b2y2=1,求曲线切线、法线,两边直接对x求导。

  3. 求导的时候求导一次化简一次。

  4. 注意, d t d x {dt \over dx} dxdt d x d t dx \over dt dtdx的倒数。

  5. 注意三角复合函数的求导

    [ sin ⁡ 2 ( x − y ) ] ′ = 2 sin ⁡ ( x − y ) cos ⁡ ( x − y ) ( 1 − y ′ ) [\sin^2 (x-y)]'=2 \sin (x-y) \cos(x-y)(1-y') [sin2(xy)]=2sin(xy)cos(xy)(1y)

  6. 出现幂指函数,首选方法是改写成e。

  7. 两个曲线相切,是要求导数值相等,且函数值相等。

  8. 在一点可导,推不出在其领域内可导,更推不出在其邻域内连续。

  9. 可导能推出连续,指的是函数在这一点可导,能推出函数在这一点连续。

  10. f ( x ) f(x) f(x) x 0 x_0 x0处的左、右导数都存在,则 f ( x ) f(x) f(x) x 0 x_0 x0处连续。

  11. 导函数极限存在,即 lim ⁡ x → x 0 f ′ ( x ) \lim_{x \to x_0} f'(x) limxx0f(x)存在,推不出函数在那点连续(即推不出 f ( x ) f(x) f(x)

    x 0 x_0 x0处连续)。

    f ( x ) = { 2 x , x ≠ 0 1 , x = 0 f(x)=\begin{cases}2x, & x\neq 0 \\ 1, &x=0 \end{cases} f(x)={2x,1,x=0x=0

    导函数极限: lim ⁡ x → 0 f ′ ( x ) = 2 \lim_{x \to 0} f'(x) = 2 limx0f(x)=2,但 f ( x ) f(x) f(x)在0点不连续。

  12. 导函数 f ′ ( x ) f'(x) f(x) x 0 x_0 x0处连续,则 f ( x ) f(x) f(x) x 0 x_0 x0处连续。

  13. f ( x ) f(x) f(x) ∣ f ( x ) ∣ |f(x)| f(x)可导的关系:

    f ( x ) f(x) f(x)可导,推不出 ∣ f ( x ) ∣ |f(x)| f(x)可导。举例, f ( x ) = x f(x) = x f(x)=x

    ②若 f ( x ) f(x) f(x) x 0 x_0 x0处连续,且 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处可导,则 f ( x ) f(x) f(x) x 0 x_0 x0处可导。

    f ( x ) f(x) f(x) x 0 x_0 x0不连续,则 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处可导,推不出 f ( x ) f(x) f(x) x 0 x_0 x0处可导。

    f ( x ) = { 1 , x > 0 − 1 , x ≤ 0 f(x) = \begin{cases}1, &x>0\\ -1, & x\leq 0 \end{cases} f(x)={1,1,x>0x0

    ∣ f ( x ) ∣ = 1 |f(x)| = 1 f(x)=1

  14. 函数可导,但是导函数不一定连续。虽然导函数不一定连续,但它具有连续函数的介值

    性。

没有记住的知识点

  1. 不连续 ± \pm ±不连续=不一定(不可导 ± \pm ±不可导=不一定)

    【注】两项相加如果存在极限,不能证明两项各自存在极限。什么都证明不了。

  2. 偶函数的导数是奇函数。

    【注】求高阶导数的时候,先考查原函数的奇偶性。

问题

  1. 函数不可导的点

    • 无定义:无定义的点,没有导数存在

    • 不连续:不连续的点,或称为离散点,导数不存在

    • 不光滑:连续点,但是此点为尖点,左右两边的斜率不一样,也就是导数不一样,不

      可导。如 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x在0点不可导。

    • 导数值为 ∞ \infty :有定义、连续、光滑,但是斜率是无穷大

  2. f ( x ) f(x) f(x)二阶可导和 f ( x ) f(x) f(x)有二阶连续导函数的区别

    f ( x ) f(x) f(x)二阶可导,是说 f ′ ′ ( x ) f''(x) f(x)存在,即二阶导函数每一点都有定义。

    二阶连续导函数,不但要求每一点二阶导数 f ′ ′ ( x ) f''(x) f(x)存在,而且要求 f ′ ′ ( x ) f''(x) f(x)是一个连续函

    数。

    如果告诉你 f ( x ) f(x) f(x)二阶可导,你用洛必达法则最多只能用到出现一阶导数 f ′ ( x ) f'(x) f(x),但是如

    果告诉你 f ( x ) f(x) f(x)有二阶连续导数,这个时候你用洛必达法则你就可以用到出现二阶导数。

常用结论

  1. f ( x ) = φ ( x ) ∣ x − a ∣ f(x)=\varphi (x) |x-a| f(x)=φ(x)xa,其 φ ( x ) \varphi(x) φ(x) x = a x=a x=a处连续,则 f ( x ) f(x) f(x) x = a x=a x=a处可导的充要条件

    φ ( a ) = 0 \varphi(a)=0 φ(a)=0

具体方法

1. 展开法求 f n ( 0 ) f^{n}(0) fn(0)

【例】 f ( x ) = x 1 − 2 x 4 f(x) = {x \over 1 - 2x^4} f(x)=12x4x,则 f ( 101 ) ( 0 ) = f^{(101)}(0) = f(101)(0)=

iShot2020-12-11下午10.00.48

  • 12
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值