函数

函数

复合函数:如果内层函数的值域与外层函数的定义域的交集非空,这两个函数才能复合,否则不能复合。

反函数

设函数 y = f ( x ) y=f(x) y=f(x)的定义域为D,值域为 R y R_y Ry。若对任意 y ∈ R y y \in R_y yRy,有唯一确定的 x ∈ D x \in D xD,使得 y = f ( x ) y=f(x) y=f(x),则记为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y),称其为函数 y = f ( x ) y=f(x) y=f(x)反函数

【注】

(1) y = x 3 y=x^3 y=x3有反函数, y = x 2 y=x^2 y=x2没有反函数
在这里插入图片描述

y = x 3 y=x^3 y=x3的图像,任取一个y,有唯一的x与之对应。

在这里插入图片描述

y = x 2 y=x^2 y=x2的图像,任取一个y,都有两个x与之对应。

(2)单调函数一定有反函数,但反之则不然。

f ( x ) = { x , 0 ≤ x < 1 3 − x , 1 ≤ x ≤ 2 f(x)=\begin{cases}x,&0 \leq x<1 \\ 3-x,&1 \leq x \leq2 \end{cases} f(x)={x,3x,0x<11x2

有反函数,但不单调
在这里插入图片描述

(3)有时也将 y = f ( x ) y=f(x) y=f(x)的反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)写成 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)

在同一坐标系中, y = f ( x ) y=f(x) y=f(x) x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)的图形重合, y = f ( x ) y=f(x) y=f(x) y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)的图形关于

直线 y = x y=x y=x对称

y = f ( x ) y=f(x) y=f(x) x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) y = f − 1 ( x ) y=f^{-1}(x) y=f1(x)
y = e x y=e^x y=ex x = ln ⁡ y x=\ln y x=lny y = ln ⁡ x y= \ln x y=lnx

在这里插入图片描述

(4) f − 1 [ f ( x ) ] = x , f [ f − 1 ( x ) ] = x f^{-1}[f(x)]=x, \quad f[f^{-1}(x)]=x f1[f(x)]=x,f[f1(x)]=x

在这里插入图片描述

函数实际上是从定义域到值域的映射,原来对函数本身的要求就是一个x对应过来一定是一个y,当然,你可以把不同的x映射到同一个y,但是如果你要有反函数,不同的x只能映射到不同的y。 f f f是从定义域映射到值域, f − 1 f^{-1} f1实际上就是一个逆映射。

【注】一个函数的要素是两点,一个是对应法则,一个是定义域。自变量用什么记号没有关系。所以 f [ f − 1 ( x ) ] = x f[f^{-1}(x)]=x f[f1(x)]=x写成 f [ f − 1 ( y ) ] = y f[f^{-1}(y)]=y f[f1(y)]=y也对。

函数性态

1.单调性

定义:

单调增:
x 1 < x 2 ⇒ f ( x 1 ) < f ( x 2 ) x_1 < x_2 \Rightarrow f(x_1) < f(x_2) x1<x2f(x1)<f(x2)

单调不减:
x 1 < x 2 ⇒ f ( x 1 ) ≤ f ( x 2 ) x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2) x1<x2f(x1)f(x2)

应用:
1)根的个数。(严格单调增或严格单调减)

2)证明不等式:[a, b]

i) f ( a ) = 0 + 增 ⇒ f ( x ) > 0 , x ∈ ( a , b ] f(a)=0+增 \Rightarrow f(x)>0, x \in (a,b] f(a)=0+f(x)>0,x(a,b]
ii) f ( a ) = 0 + 单 调 不 减 ⇒ f ( x ) ≥ 0 , x ∈ ( a , b ] f(a)=0+单调不减 \Rightarrow f(x) \geq 0, x \in (a,b] f(a)=0+f(x)0,x(a,b]

判定:
(1)定义;

(2)导数:设 f ( x ) f(x) f(x)I(定义域)上可导,则

a) f ′ ( x ) > 0 ⇒ f ( x ) f'(x)>0 \Rightarrow f(x) f(x)>0f(x)单调增;(充分非必要)

b) f ′ ( x ) ≥ 0 ⇔ f ( x ) f'(x) \geq0 \Leftrightarrow f(x) f(x)0f(x)单调不减;(充要)

【注】

f ( x ) 单 调 增 ⇏ f ′ ( x ) > 0 f(x)单调增 \nRightarrow f'(x)>0 f(x)f(x)>0

例, f ( x ) = x 3 f(x)=x^3 f(x)=x3单调增,但是它的导数 f ′ ( x ) = 3 x 2 f'(x)=3x^2 f(x)=3x2在原点处等于0。

在这里插入图片描述

2.奇偶性

定义: 偶函数 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x);奇函数 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)

​ 奇函数X奇函数=偶函数

​ 奇函数X偶函数=奇函数

​ 偶函数X偶函数=偶函数

​ 奇函数+偶函数=不奇不偶

​ 偶函数 ± \pm ±偶函数=偶函数

【注】

(1)奇函数: sin ⁡ x , tan ⁡ x , arcsin ⁡ x , arctan ⁡ x , ln ⁡ 1 − x 1 + x , ln ⁡ ( x + 1 + x 2 ) , e x − 1 e x + 1 , f ( x ) − f ( − x ) \sin x, \tan x, \arcsin x, \arctan x, \ln \frac{1-x}{1+x}, \ln (x+\sqrt{1+x^{2}}), \frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1},f(x)-f(-x) sinx,tanx,arcsinx,arctanx,ln1+x1x,ln(x+1+x2 ),ex+1ex1,f(x)f(x)

偶函数:

x 2 , ∣ x ∣ , cos ⁡ x , f ( x ) + f ( − x ) x^2,|x|,\cos x,f(x)+f(-x) x2,x,cosx,f(x)+f(x)

(2)奇函数y=f(x)的图形关于原点对称,且若f(x)在x=0处有定义,则f(0)=0;
偶函数的图形关于y轴对称。

判定 :

(1)利用定义;
(2)设f(x)可导,则
①f(x)是奇函数→f’ (x)是偶函数;

注意:前提是f(x)可导,如果考题上是:f(x)是奇函数,那么它的导函数一定是偶函数就是错误的。

(导数的几个意义是斜率,图中x点和-x点对应的斜率是相同的)

证明:

− f ( x ) = f ( − x ) -f(x)=f(-x) f(x)=f(x)两边求导得 − f ′ ( x ) = − f ′ ( − x ) -f'(x)=-f'(-x) f(x)=f(x),即 f ′ ( x ) = f ( − x ) f'(x)=f(-x) f(x)=f(x)

​ ②f(x)是偶函数→f’ (x)是奇函数.

(3)偶函数的原函数不一定是奇函数。

例, 函 数 f ( x ) = x 2 , 原 函 数 g ( x ) = 1 3 x 3 + 1 不 是 奇 函 数 函数f(x)=x^2,原函数g(x)={1 \over 3}x^3+1不是奇函数 f(x)=x2g(x)=31x3+1,它的唯一一个奇函数是 g ( x ) = 1 3 x 3 g(x)={1 \over 3}x^3 g(x)=31x3

奇函数的原函数一定是偶函数。

(4)连续 的奇函数其原函数都是偶函数;
连续的偶函数其原函数中有唯一一个是奇函数。

【注】

设f(x)连续
(1)若f(x)是奇函数,则 ∫ 0 x f ( t ) d t \int_{0}^{x}f(t)dt 0xf(t)dt 是偶函数;

​ * 下限0可以改为a,即 ∫ a x f ( t ) d t \int_{a}^{x}f(t)dt axf(t)dt,因为 ∫ a x = ∫ a 0 + ∫ 0 x \int_{a}^{x}=\int_{a}^{0}+\int_{0}^{x} ax=a0+0x

其中: ∫ a 0 \int_{a}^{0} a0为常数, ∫ 0 x \int_{0}^{x} 0x为偶函数,偶函数+常数=偶函数

(2)若f(x)是偶函数,则 ∫ 0 x f ( t ) d t \int_{0}^{x}f(t)dt 0xf(t)dt 是奇函数。

​ * 下限0不能改为a,因为:奇函数+常数 ≠ \neq =奇函数

∫ f ( x ) d x \int f(x)dx f(x)dx是f(x)的所有原函数, ∫ 0 x f ( t ) d t \int_{0}^{x}f(t)dt 0xf(t)dt是它的一个具体的原函数。

∫ f ( x ) d x = ∫ 0 x f ( t ) d t + C \int f(x)dx =\int_{0}^{x}f(t)dt+C f(x)dx=0xf(t)dt+C

f(x)是奇函数,其原函数 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_{0}^{x}f(t)dt F(x)=0xf(t)dt本质上是面积,所以, F ( − x ) = ∫ 0 − x f ( t ) d t = F ( x ) = ∫ 0 x f ( t ) d t = S F(-x)=\int_{0}^{-x}f(t)dt=F(x)=\int_{0}^{x}f(t)dt=S F(x)=0xf(t)dt=F(x)=0xf(t)dt=S,即奇函数的原函数一定是偶函数。

其中:

F ( − x ) = ∫ 0 − x f ( t ) d t = − ∫ − x 0 f ( t ) d t = − ( − S ) = S F(-x)=\int_{0}^{-x}f(t)dt=-\int_{-x}^{0}f(t)dt=-(-S)=S F(x)=0xf(t)dt=x0f(t)dt=(S)=S

【注】用定积分的几个意义的时候,一定是下限小上限大

∫ a b f ( x ) d x , ( a < b ) \int_{a}^{b}f(x)dx,\quad(a<b) abf(x)dx(a<b)

其中 y = f ( x ) y=f(x) y=f(x)在x轴上方取正号,在x轴下方取负号。

3.周期性

定义: f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)

【注】

(1)sinx和cosx以2π为周期,sin2x和|sinx|以π为周期.
(2)若f(x)以T为周期,则f(ax+b)以 T ∣ a ∣ {T \over |a|} aT (a≠0)为周期.

判定

(1)利用定义;

(2)可导的周期函数其导函数为周期函数;

(3)周期函数的原函数不一定是周期函数. (如1 +cos x的一个原函数x+sinx不是周期函数)
【注】

(1)设f(x)连续且以T为周期,则
F ( x ) = ∫ 0 x f ( t ) d t F(x)= \int_{0}^{x}f(t)dt F(x)=0xf(t)dt是以T为周期的周期函数 ⇔ \Leftrightarrow ∫ 0 T f ( x ) d x = 0 \int_{0}^{T}f(x)dx=0 0Tf(x)dx=0

(2)周期函数的原函数是周期函数的充要条件是其在一个周期上的积分为零.

函数 sin ⁡ 3 x \sin^3x sin3x sin ⁡ 2 x \sin^2x sin2x ∣ s i n x ∣ \vert sin x \vert sinx
周期 2 π 2 \pi 2π$ π \pi π π \pi π
积分 ∫ 0 2 π sin ⁡ 3 x = ∫ − π π sin ⁡ 3 x = 0 \int_{0}^{2\pi} \sin^3x=\int_{-\pi}^{\pi} \sin^3x=0 02πsin3x=ππsin3x=0 ∫ 0 π sin ⁡ 2 x ≠ 0 \int_{0}^{\pi} \sin^2x \neq 0 0πsin2x=0 ∫ 0 π ∣ sin ⁡ x ∣ ≠ 0 \int_{0}^{\pi} \vert \sin x \vert \neq 0 0πsinx=0
判断不是不是

【知识点】

sinx的n次方,当n为偶数周期为π,
因为[sin(x+π)]n=(-sinx)n=(sinx)n;
sinx的n次方,当n为奇数周期为2π,
因为当[sin(x+π)]n=(-sinx)n=-(sinx)n,
但[sin(x+2π)]n=(sinx)n.

4.有界性

定义: 若 ∃ M > 0 , ∀ x ∈ I , ∣ f ( x ) ∣ ≤ M 若 \exists M>0, \forall x \in I,|f(x)| \leq M M>0,xIf(x)M,则称f(x)在I上有界。

【注】

∣ sin ⁡ x ∣ ≤ 1 , ∣ cos ⁡ x ∣ ≤ 1 , ∣ arcsin ⁡ x ∣ ≤ π 2 , ∣ arctan ⁡ x ∣ < π 2 , ∣ arccos ⁡ x ∣ ≤ π |\sin x| \leq1, |\cos x| \leq 1,|\arcsin x| \leq {\pi \over 2},| \arctan x| < { \pi \over 2},|\arccos x| \leq \pi sinx1,cosx1,arcsinx2π,arctanx<2π,arccosxπ

判定:

(1)利用定义;

(2) f ( x ) 在 [ a , b ] 上 连 续 ⇒ f ( x ) 在 [ a , b ] 上 有 界 ; f(x)在[a,b]上连续 \Rightarrow f(x)在[a,b]上有界; f(x)[a,b]f(x)[a,b]

  • 若这里变成开区间,则
    • f ( x ) 在 ( a , b ) 上 连 续 ⇏ f ( x ) 在 ( a , b ) 上 有 界 ; f(x)在(a,b)上连续 \nRightarrow f(x)在(a,b)上有界; f(x)(a,b)f(x)(a,b)
    • 例子, f ( x ) = 1 x f(x)={1 \over x} f(x)=x1,f(x)在(0,1)上连续,但是 lim ⁡ x → 0 + = ∞ \lim_{x \to 0^+}= \infty limx0+=,所以f(x)在(0,1)上无界。

(3) f ( x ) 在 ( a , b ) 上 连 续 , 且 f ( a + ) 和 f ( b − ) 存 在 ⇒ f ( x ) 在 ( a , b ) 上 有 界 ; f(x)在(a,b)上连续,且f(a^+)和f(b^-)存在 \Rightarrow f(x)在(a,b)上有界; f(x)(a,b)f(a+)f(b)f(x)(a,b)

  • 区间(a,b)改为无穷区间 ( − ∞ , b ) , ( a , + ∞ ) , ( − ∞ , + ∞ ) (-\infty ,b),(a,+\infty),(-\infty,+\infty) (,b),(a,+),(,+)结论仍然成立。

(4) f ′ ( x ) 在 区 间 I ( 有 限 ) 上 有 界 ⇒ f ( x ) 在 I 上 有 界 f'(x)在区间I(有限)上有界 \Rightarrow f(x)在I上有界 f(x)If(x)I

  • 区间I,左开右闭,左闭右开,全开全闭都行,但一定不能是无穷区间。

【知识点】

f ( x ) 有 界 ⇏ f ′ ( x ) 有 界 f(x)有界 \nRightarrow f'(x)有界 f(x)f(x)

前提一定要可导,如果题目中没有“可导”,直接判断错误。

f ( x ) = x , ( 0 , 1 ) f(x)= \sqrt{x},(0,1) f(x)=x ,(0,1),可导且有界,但是 f ′ ( x ) = 1 2 x f'(x)={1 \over 2\sqrt{x}} f(x)=2x 1 x → 0 {x\to 0} x0时趋向于无穷。所以左不能推右。

f ′ ( x ) 有 界 ⇏ f ( x ) 有 界 f'(x)有界 \nRightarrow f(x)有界 f(x)f(x)

f ′ ( x ) = 1 , 其 原 函 数 f ( x ) = x , 在 区 间 ( − ∞ , + ∞ ) 上 无 界 f'(x)=1,其原函数f(x)=x,在区间(-\infty,+\infty)上无界 f(x)=1,f(x)=x,(,+),所以右不能推左。

若要成立,必须加条件,即在有限区间上有界。

  • 20
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值