06定积分

定积分

定积分的概念

  1. 定积分定义

    ∫ a b f ( x ) d x = Δ lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_{a}^{b}f(x)dx \xlongequal{\Delta} \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi_i) \Delta x_i abf(x)dxΔ limλ0i=1nf(ξi)Δxi

    【注】

    (1) λ → 0 与 n → ∞ \lambda \to 0 与n \to \infty λ0n不等价;

    (2) ∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx仅与 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有关: ∫ a b f ( x ) d x = ∫ a b f ( t ) d t \int_{a}^{b}f(x)dx=\int_{a}^{b}f(t)dt abf(x)dx=abf(t)dt

    (3)极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi_i) \Delta x_i limλ0i=1nf(ξi)Δxi ξ i \xi_i ξi的取法和区间 [ a , b ] [a,b] [a,b]的分法无关。

    ∫ 0 1 f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) \int_{0}^{1}f(x)dx=\lim_{ \lambda \to 0} \sum_{i=1}^{n}f(\xi_i) \Delta x_i=\lim_{n \to \infty} {1 \over n} \sum_{i=1}^{n}f({i \over n}) 01f(x)dx=limλ0i=1nf(ξi)Δxi=limnn1i=1nf(ni)

  2. 定积分存在的存在性

    1)必要条件

    f ( x ) f(x) f(x)有界

    2)充分条件

    (1) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续;

    (2) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上有界且只有有限个间断点;

    (3) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上仅有有限个第一类间断点。

  3. 定积分的几何意义

    iShot2020-09-25下午04.42.25

【注】定积分几何意义用的时候一定有一个注意点:a一定要小于b,即下限一定要小于

上限。

所以你要用几何意义的时候,一定记住,一定是下限小上限大。如果是上限小下限大,就不

能用几何意义,你得先加负号写成下限小上限大,才能用几何意义。

定积分的性质

基本性质

∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \int_{a}^{b}[f(x)\pm g(x)]dx=\int_{a}^{b}f(x)dx \pm \int_{a}^{b}g(x)dx ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx

∫ a b k f ( x ) d x = k ∫ a b f ( x ) d x \int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx abkf(x)dx=kabf(x)dx

∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

∫ a b 1 d x = b − a \int_{a}^{b}1dx=b-a ab1dx=ba

积分不等式定理

f ( x ) ≥ 0 f(x) \geq 0 f(x)0,则 ∫ a b f ( x ) d x ≥ 0 \int_{a}^{b}f(x)dx \geq 0 abf(x)dx0

f ( x ) ≥ g ( x ) f(x)\geq g(x) f(x)g(x),则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_{a}^{b}f(x)dx \geq \int_{a}^{b}g(x)dx abf(x)dxabg(x)dx

∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_{a}^{b}f(x)dx| \leq \int_{a}^{b}|f(x)|dx abf(x)dxabf(x)dx

( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f 2 ( x ) d x ) ( ∫ a b g 2 ( x ) d x ) \left(\int_a^b f(x)g(x)dx \right)^2 \leq \left(\int_a^b f^2(x)dx \right) \left(\int_a^b g^2(x)dx \right) (abf(x)g(x)dx)2(abf2(x)dx)(abg2(x)dx)

积分估值定理

设M,m分别是 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的最大值最小值,则有

m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a) \leq \int_{a}^{b}f(x)dx \leq M(b-a) m(ba)abf(x)dxM(ba)

积分中值定理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续

∫ a b f ( x ) d x = f ( ξ ) ( b − a ) , ξ ∈ ( a , b ) \int_{a}^{b}f(x)dx = f(\xi)(b-a), \xi \in(a,b) abf(x)dx=f(ξ)(ba),ξ(a,b)

广义积分中值定理

f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续, g ( x ) g(x) g(x)不变号,即 g ( x ) ≥ 0 或 g ( x ) ≤ 0 g(x) \geq 0 或 g(x) \leq 0 g(x)0g(x)0

∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x , ξ ∈ [ a , b ] \int_{a}^{b}f(x)g(x)dx=f(\xi)\int_{a}^{b}g(x)dx, \xi \in [a,b] abf(x)g(x)dx=f(ξ)abg(x)dx,ξ[a,b]

【注1】极限等于非零常数的那个往出搬。

【注2】 g ( x ) g(x) g(x)不变号的意思是, g ( x ) g(x) g(x)恒大于等于0或者恒小于等于0。

积分平均值定理

f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续,则至少存在一点 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b],使得
1 b − a ∫ a b f ( x ) d x = f ( ξ ) 或 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) {1 \over b-a} \int_a^b f(x)dx = f(\xi) \quad 或 \quad \int_a^bf(x)dx = f(\xi)(b-a) ba1abf(x)dx=f(ξ)abf(x)dx=f(ξ)(ba)

通常我们将 1 b − a ∫ a b f ( x ) d x {1 \over b-a} \int_a^b f(x)dx ba1abf(x)dx称为函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的平均值。

积分上限函数 ∫ a x f ( t ) d t \int_{a}^{x}f(t)dt axf(t)dt

定理:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [ab]上连续,则 ∫ a x f ( t ) d t \int_{a}^{x}f(t)dt axf(t)dt [ a , b ] [a,b] [a,b]上可导,且

( ∫ a x f ( t ) d t ) ′ = f ( x ) (\int_{a}^{x}f(t)dt)'=f(x) (axf(t)dt)=f(x)

( ∫ φ ( x ) ψ ( x ) f ( t ) d t ) ′ = f ( ψ ( x ) ) ψ ′ ( x ) − f ( φ ( x ) ) φ ′ ( x ) (\int_{\varphi(x)}^{\psi (x)}f(t)dt)'=f(\psi(x))\psi'(x)-f(\varphi(x))\varphi'(x) (φ(x)ψ(x)f(t)dt)=f(ψ(x))ψ(x)f(φ(x))φ(x)

定积分的计算

1)牛顿—莱布尼兹公式 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b}f(x)dx = F(b)-F(a) abf(x)dx=F(b)F(a)

2)换元法 ∫ a b f ( x ) d x = x = φ ( t ) ∫ α β f ( φ ( t ) ) φ ′ ( t ) d t \int_{a}^{b}f(x)dx \xlongequal{x = \varphi(t)}\int_{ \alpha}^{\beta}f(\varphi(t))\varphi'(t)dt abf(x)dxx=φ(t) αβf(φ(t))φ(t)dt

3)分部积分法 ∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_{a}^{b}udv = uv|_a^b- \int_{a}^{b}vdu abudv=uvababvdu

4)利用奇偶性,周期性

∫ − a a f ( x ) d x = { 0 , f ( x ) 为 奇 函 数 2 ∫ 0 a f ( x ) d x , f ( x ) 为 偶 函 数 \int_{-a}^{a}f(x)dx= \begin{cases}0,& f(x)为奇函数 \\ 2 \int_{0}^{a}f(x)dx,& f(x)为偶函数 \end{cases} aaf(x)dx={0,20af(x)dx,f(x)f(x)

∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int_{a}^{a+T}f(x)dx=\int_{0}^{T}f(x)dx aa+Tf(x)dx=0Tf(x)dx

∫ 0 n T f ( x ) d x = n ∫ 0 T f ( x ) d x \int_{0}^{nT}f(x)dx=n\int_{0}^{T}f(x)dx 0nTf(x)dx=n0Tf(x)dx

5)利用公式

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋯ 1 2 ⋅ π 2 , n 偶 n − 1 n ⋅ n − 3 n − 2 ⋯ 2 3 ⋅ 1 , n 奇 \int_{0}^{ \pi \over 2} \sin^n x dx = \int_{0}^{\pi \over2} \cos^n x dx = \begin{cases}{n-1 \over n}·{n-3 \over n-2}\cdots {1 \over 2}·{ \pi \over 2},&n偶\\{n-1 \over n}·{n-3 \over n-2}\cdots {2 \over 3}·1,&n奇 \end{cases} 02πsinnxdx=02πcosnxdx={nn1n2n3212π,nn1n2n3321,nn

【注】是n-2,n-3。上式还可以写成:

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { ( n − 1 ) ! ! n ! ! ⋅ π 2 , n 偶 ( n − 1 ) ! ! n ! ! ⋅ 1 , n 奇 \int_{0}^{ \pi \over 2} \sin^n x dx = \int_{0}^{\pi \over2} \cos^n x dx = \begin{cases}{(n-1)!! \over n!!}·{ \pi \over 2},&n偶\\{(n-1)!! \over n!!}·1,&n奇 \end{cases} 02πsinnxdx=02πcosnxdx={n!!(n1)!!2π,n!!(n1)!!1,nn

例,

∫ 0 π 2 sin ⁡ 8 x d x = 7 8 ⋅ 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 35 π 256 \int_0^{ \pi \over 2} \sin ^8x dx = {7 \over 8}·{5 \over 6}·{3 \over 4}·{1 \over 2}·{ \pi \over 2}={35 \pi \over 256} 02πsin8xdx=876543212π=25635π

∫ 0 π 2 s i n 9 x d x = 8 9 ⋅ 6 7 ⋅ 4 5 ⋅ 2 3 ⋅ 1 = 128 315 \int_0^{\pi \over 2} sin^ 9 x dx = {8 \over 9}·{6 \over 7}·{4 \over 5}·{2 \over 3}·1 = {128 \over 315} 02πsin9xdx=987654321=315128

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int_{0}^{\pi}xf(\sin x)dx = {\pi \over 2} \int_{0}^{\pi}f( \sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx

变上限积分

iShot2020-10-22上午08.32.40

1)连续性

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可积,则 ∫ a x f ( t ) d t \int_a^x f(t)dt axf(t)dt [ a , b ] [a,b] [a,b]上连续。

F ( x ) = ∫ a x f ( t ) d t F(x) = \int_a^xf(t)dt F(x)=axf(t)dt在x点的函数值,就是a到x的积分,几何上就是蓝色区域的面积。

在这里插入图片描述

x从小于 x 0 x_0 x0的地方趋向于 x 0 x_0 x0 F ( x ) F(x) F(x)在这点的左极限,是粉色部分的面积。

在这里插入图片描述

x从大于 x 0 x_0 x0的地方趋向于 x 0 x_0 x0,则a到x的积分为粉色区域的面积加上绿色区域的面积。当x趋

向于 x 0 x_0 x0的时候,绿色区域的面积要趋向于0,最后还是等于粉色区域的面积。

在这里插入图片描述

所以,虽然 f ( x ) f(x) f(x) x 0 x_0 x0不连续,但是变上限积分在这点任然是连续的。

2)可导性

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,则 ∫ a x f ( t ) d t \int_a^x f(t)dt axf(t)dt [ a , b ] [a,b] [a,b]上可导,且 ( ∫ a x f ( t ) d t ) ′ = f ( x ) (\int_a^xf(t)dt)'=f(x) (axf(t)dt)=f(x)

【重点结论】有关 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)dt F(x)=axf(t)dt在一点处的可导性的结论

如果 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上除点 x = x 0 ∈ ( a , b ) x=x_0 \in (a,b) x=x0(a,b)外均连续,则在点 x = x 0 x=x_0 x=x0
在这里插入图片描述

【注1】只有 f ( x ) f(x) f(x)连续, F ( x ) = ∫ a x f ( t ) d t F(x)= \int_a^x f(t)dt F(x)=axf(t)dt才能是 f ( x ) f(x) f(x)的原函数。

【注2】可去:在 x 0 x_0 x0这点的极限存在,但是极限值不等于函数值,函数值可能定义在别的地

方。这一点函数值变了,这个积分值不变,我们知道,定积分的值,你改变区间上一个点,

改变有限个点,它都不影响值,因为积分的含义是面积。所以,如果你这点出现一个可去间

断点,它这个变上限积分函数 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)dt F(x)=axf(t)dt,和你 f ( x ) f(x) f(x)函数连续的时候那个变上限积

分函数是一样的。所以原来可导,现在任然是可导,只不过,原来连续时候的导数,刚好等

于原来连续函数在这点的值,即 F ′ ( x 0 ) = f ( x 0 ) F'(x_0)=f(x_0) F(x0)=f(x0)。现在, F ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) F'(x_0)= \lim_{x \to x_0}f(x) F(x0)=limxx0f(x)

【注3】跳跃:在 ( a , x 0 ) (a, x_0) (a,x0)上, f ( x ) f(x) f(x)是连续的,所以在 ( a , x 0 ) (a,x_0) (a,x0)这些点上,变上限积分F的导数

都等于f,即 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)。包括在 ( x 0 , b ) (x_0, b) (x0,b)这些点上 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)

x 0 x_0 x0点, F ( x ) F(x) F(x)在这点的左导数等于 f ( x ) f(x) f(x)在这点的左极限, F ( x ) F(x) F(x)在这点的右导数等于

f ( x ) f(x) f(x)在这点的右极限。但是因为这单是跳跃间断点,所以 f ( x ) f(x) f(x) x 0 x_0 x0点左右极限存在但

是不相等,就导致 F ( x ) F(x) F(x) x 0 x_0 x0点左右极限存在但是不相等,所以就不可导。

3)奇偶性

①若 f ( x ) f(x) f(x)为奇函数,则 ∫ 0 x f ( t ) d t \int_0^xf(t)dt 0xf(t)dt为偶函数

②若 f ( x ) f(x) f(x)为偶函数,则 ∫ 0 x f ( t ) d t \int_0^xf(t)dt 0xf(t)dt为奇函数

【注】

①下限0可以改为a,即 ∫ a x f ( t ) d t \int_{a}^{x}f(t)dt axf(t)dt,因为 ∫ a x = ∫ a 0 + ∫ 0 x \int_{a}^{x}=\int_{a}^{0}+\int_{0}^{x} ax=a0+0x

其中: ∫ a 0 \int_{a}^{0} a0为常数, ∫ 0 x \int_{0}^{x} 0x为偶函数,偶函数+常数=偶函数

反常积分

无穷区间上的反常积分

1) ∫ a + ∞ f ( x ) d x = lim ⁡ t → + ∞ ∫ a t f ( x ) d x \int_{a}^{+ \infty}f(x)dx = \lim_{t \to +\infty} \int_{a}^{t}f(x)dx a+f(x)dx=limt+atf(x)dx

2) ∫ − ∞ b f ( x ) d x = lim ⁡ t → − ∞ ∫ t b f ( x ) d x \int_{ - \infty}^{b}f(x)dx = \lim_{t \to - \infty} \int_t^bf(x)dx bf(x)dx=limttbf(x)dx

3)若 ∫ a + ∞ f ( x ) d x \int_a^{+ \infty}f(x)dx a+f(x)dx ∫ − ∞ a f ( x ) d x \int_{- \infty}^af(x)dx af(x)dx都收敛,则称 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty}f(x)dx +f(x)dx收敛。

∫ a + ∞ f ( x ) d x \int_a^{+ \infty}f(x)dx a+f(x)dx ∫ − ∞ a f ( x ) d x \int_{- \infty}^af(x)dx af(x)dx中只要有一个发散,则 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty}f(x)dx +f(x)dx发散。

∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ a f ( x ) d x + ∫ a + ∞ f ( x ) d x \int_{-\infty}^{+\infty}f(x)dx=\int_{- \infty}^af(x)dx+\int_a^{+ \infty}f(x)dx +f(x)dx=af(x)dx+a+f(x)dx

【常用结论】

∫ a + ∞ 1 x P d x ; { P > 1 , 收 敛 P ≤ 1 , 发 散 \int_a^{+ \infty}{1 \over x^P}dx;\begin{cases} P >1,&收敛 \\ P \leq 1, &发散 \end{cases} a+xP1dx;{P>1P1,

无界函数的反常积分

设a为 f ( x ) f(x) f(x)的无界点, ∫ a b f ( x ) d x = lim ⁡ t → a + ∫ t b f ( x ) d x \int_a^bf(x)dx = \lim_{t \to a^+} \int_t^b f(x)dx abf(x)dx=limta+tbf(x)dx

设b为 f ( x ) f(x) f(x)的无界点, ∫ a b f ( x ) d x = lim ⁡ t → b − ∫ a t f ( x ) d x \int_a^bf(x)dx = \lim_{t \to b^-} \int_a^t f(x)dx abf(x)dx=limtbatf(x)dx

设c为 f ( x ) f(x) f(x)的无界点 ( a < c < b ) (a<c<b) (a<c<b) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^bf(x)dx = \int_a^c f(x)dx +\int_c^bf(x)dx abf(x)dx=acf(x)dx+cbf(x)dx

【常用结论】

∫ a b 1 ( x − a ) P d x ; ∫ a b 1 ( b − x ) P d x { P < 1 , 收 敛 P ≥ 1 , 发 散 \int_a^b { 1 \over (x-a)^P}dx ; \int_a^b {1 \over (b-x)^P}dx \quad \begin{cases}P < 1 , & 收敛 \\ P \geq 1,& 发散 \end{cases} ab(xa)P1dx;ab(bx)P1dx{P<1,P1,

定积分的应用

几何应用

平面图形的面积
  1. A = ∫ a b f ( x ) d x A = \int_a^b f(x)dx A=abf(x)dx

在这里插入图片描述

  1. A = 1 2 ∫ α β r 2 ( θ ) d θ A = {1 \over 2} \int_{\alpha}^{\beta} r^2(\theta) d \theta A=21αβr2(θ)dθ

在这里插入图片描述

【注】

弧长 = 半径 × \times ×弧度

扇形面积 = 1/2 × \times × 弧长 × \times × 半径 = 1/2 × \times × 半径2 × \times × 弧度

即, l = r θ , S = 1 2 r 2 θ l = r \theta, \quad S = {1 \over 2} r^2 \theta l=rθ,S=21r2θ

  1. A = 1 2 ∫ α β [ r 2 2 ( θ ) − r 1 2 ( θ ) ] d θ A = {1 \over 2} \int_{\alpha}^{\beta} [r_2^2 (\theta)-r_1^2 (\theta)] d \theta A=21αβ[r22(θ)r12(θ)]dθ

在这里插入图片描述

在这里插入图片描述

①取 [ x , x + d x ] ∈ [ a , b ] [x, x+dx] \in [a,b] [x,x+dx][a,b]

d A = 2 π ∣ f ( x ) ∣ ⋅ d s = 2 π ∣ f ( x ) ∣ ⋅ 1 + f ′ 2 ( x ) d x dA = 2 \pi|f(x)|·ds = 2 \pi |f(x)| · \sqrt{1 + f'^2(x)}dx dA=2πf(x)ds=2πf(x)1+f2(x) dx

A = ∫ a b d A = 2 π ∫ a b ∣ f ( x ) ∣ 1 + f ′ 2 f ( x ) d x A = \int_a^b dA = 2 \pi \int_a^b |f(x)| \sqrt{1+ f'^2f(x)}dx A=abdA=2πabf(x)1+f2f(x) dx

旋转体体积
  1. 绕x轴: V x = π ∫ a b f 2 ( x ) d x V_x = \pi \int_a^b f^2(x)dx Vx=πabf2(x)dx

在这里插入图片描述

  1. 绕y轴: V y = 2 π ∫ a b ∣ x ∣ ∣ f ( x ) ∣ d x V_y = 2 \pi \int_a^b |x| |f(x)|dx Vy=2πabxf(x)dx

在这里插入图片描述

  1. 已知截面面积: V = ∫ a b A ( x ) d x V = \int_a^b A(x)dx V=abA(x)dx

在这里插入图片描述

若平面区域D由曲线 y = f ( x ) , ( f ( x ) > 0 ) , x = a , x = b ( a < b ) y = f(x), (f(x)>0),x=a,x=b(a<b) y=f(x),(f(x)>0)x=a,x=b(a<b)所围成,则

在这里插入图片描述

1)区域D绕x轴旋转一周所得到的旋转体积为

V x = π ∫ a b f 2 ( x ) d x V_x=\pi \int_a^bf^2(x)dx Vx=πabf2(x)dx

其中: d v = π f 2 ( x ) d x dv = \pi f^2(x)dx dv=πf2(x)dx

2)区域D绕y轴旋转一周所得到的旋转体积为

V y = 2 π ∫ a b x f ( x ) d x V_y = 2 \pi \int_a^b xf(x)dx Vy=2πabxf(x)dx

其中: d v = 2 π x f ( x ) d x dv = 2 \pi x f(x)dx dv=2πxf(x)dx

3)一般公式

在这里插入图片描述

小区域上环状体的体积: d v = 2 π    r ( x , y ) d σ dv = 2 \pi \ \ r(x,y) d \sigma dv=2π  r(x,y)dσ

V = 2 π ∬ D r ( x , y ) d σ V = 2 \pi \iint \limits_D r(x,y)d \sigma V=2πDr(x,y)dσ

其中: r ( x , y ) r(x,y) r(x,y)为点到直线的距离 r ( x , y ) = ∣ a x + b y − c a 2 + b 2 ∣ r(x,y) = |{ax+by-c \over \sqrt{a^2+b^2}}| r(x,y)=a2+b2 ax+byc

V x = 2 π ∬ D y d σ = 2 π ∫ a b d x ∫ 0 f ( x ) y d y = π ∫ a b f 2 ( x ) d x V_x = 2 { \pi} \iint \limits_D y d \sigma = 2 { \pi} \int_a^b dx \int_0^{f(x)} y dy= \pi \int_a^b f^2(x)dx Vx=2πDydσ=2πabdx0f(x)ydy=πabf2(x)dx

V y = 2 π ∬ D x d σ = 2 π ∫ a b d x ∫ 0 f ( x ) x d y = 2 π ∫ a b x f ( x ) d x V_y = 2 \pi \iint \limits_D x d \sigma = 2 \pi \int_a^b dx \int_0^{f(x)} x dy = 2 \pi \int_a^b x f(x)dx Vy=2πDxdσ=2πabdx0f(x)xdy=2πabxf(x)dx

例:

在这里插入图片描述

绕x轴转: V x = 2 π ∬ D y d σ = 2 π ∫ 0 1 d x ∫ x 2 x y d y V_x = 2 \pi \iint \limits_D y d \sigma = 2 \pi \int_0^1 dx \int_{x^2}^x y dy Vx=2πDydσ=2π01dxx2xydy

绕y轴转: V y = 2 π ∬ D x d σ = 2 π ∫ 0 1 d x ∫ x 2 x d y V_y = 2 \pi \iint \limits_D x d \sigma = 2 \pi \int_0^1 dx \int_{x^2}^x dy Vy=2πDxdσ=2π01dxx2xdy

绕x=1转: V x = 1 = 2 π ∬ D ( 1 − x ) d σ V_{x = 1} = 2 \pi \iint \limits_D (1 -x)d \sigma Vx=1=2πD(1x)dσ

绕y=2转: V y = 2 = 2 π ∬ D ( 2 − y ) d σ V_{y=2} = 2 \pi \iint \limits_D(2-y)d \sigma Vy=2=2πD(2y)dσ

已知横截面面积的体积

在这里插入图片描述

V = ∫ a b S ( x ) d x V = \int_a^b S(x)dx V=abS(x)dx

曲线弧长

1) C : y = y ( x ) , a ≤ x ≤ b , s = ∫ a b 1 + y ′ 2 d x C:y = y(x), a \leq x \leq b, s = \int_a^b \sqrt{1+y'^2}dx C:y=y(x),axb,s=ab1+y2 dx

在这里插入图片描述

( d s ) 2 = ( d x ) 2 + ( d y ) 2 = ( d x ) 2 + ( y ′ d x ) 2 (ds)^2= (dx)^2+(dy)^2=(dx)^2+(y'dx)^2 (ds)2=(dx)2+(dy)2=(dx)2+(ydx)2

d s = 1 + ( y ′ ) 2 d x ds=\sqrt{1+(y')^2}dx ds=1+(y)2 dx

2) C : { x = x ( t ) y = y ( t ) α ≤ t ≤ β , s = ∫ α β x ′ 2 ( t ) + y ′ 2 ( t ) d t C: \begin{cases}x = x(t) \\ y = y(t) \end{cases} \alpha \leq t \leq \beta, s = \int_{\alpha}^{\beta} \sqrt{x'^2(t) +y'^2(t)}dt C:{x=x(t)y=y(t)αtβ,s=αβx2(t)+y2(t) dt

3) C : ρ = ρ ( θ ) , α ≤ θ ≤ β , s = ∫ α β ρ 2 + ρ ′ 2 d θ C: \rho = \rho(\theta), \alpha \leq \theta \leq \beta, s = \int_{\alpha}^{\beta} \sqrt{ \rho^2+\rho'^2}d \theta C:ρ=ρ(θ),αθβ,s=αβρ2+ρ2 dθ

在这里插入图片描述

弧长: l = α × r l = \alpha \times r l=α×r

旋转体的侧面积

1)直角坐标

S = 2 π ∫ a b f ( x ) 1 + f ′ 2 ( x ) d x S = 2 \pi \int_a^b f(x) \sqrt{1+f'^2(x)}dx S=2πabf(x)1+f2(x) dx

2)参数方程

S = 2 π ∫ α β y ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) d t S = 2 \pi \int_{\alpha}^{\beta}y(t) \sqrt{x'^2(t)+y'^2(t)}dt S=2παβy(t)x2(t)+y2(t) dt

3)极坐标方程

S = 2 π ∫ α β r sin ⁡ θ r 2 ( θ ) + r ′ 2 ( θ ) d θ S = 2 \pi \int_{\alpha}^{\beta} r \sin \theta \sqrt{r^2(\theta)+r'^2(\theta)}d \theta S=2παβrsinθr2(θ)+r2(θ) dθ

物理应用

  1. 压力(3次考过)

  2. 变力做功(4次考过)

  3. 引力(1次考过)

知识点

  1. ∫ 0 a a 2 − x 2 d x = π 4 a 2 ( a > 0 ) \int_0^{a} \sqrt{a^2 - x^2}dx={ \pi \over 4} a^2(a >0) 0aa2x2 dx=4πa2(a>0)

    x 2 + y 2 = a 2 y = a 2 − x 2 x^2 + y^2 = a^2 \quad y = \sqrt{a^2 -x^2} x2+y2=a2y=a2x2

    ∫ 0 1 1 − x 2 = π 4 \int_0^{1} \sqrt{1-x^2}= { \pi \over 4} 011x2 =4π

    iShot2020-10-09下午04.25.56

    ∫ 0 a 2 a x − x 2 d x = π 4 a 2 \int_0^a \sqrt{2ax - x^2}dx = {\pi \over 4}a^2 0a2axx2 dx=4πa2

    iShot2020-10-09下午04.39.00

  2. 点到直线的距离

    直线公式:$Ax +By+C = 0 $

    点P的坐标为: ( x 0 , y 0 ) (x_0, y_0) (x0,y0)

    点到直线的公式: d = ∣ A x 0 + B y 0 + C A 2 + B 2 ∣ d= |{Ax_0+By_0+C \over \sqrt{A^2+B^2}}| d=A2+B2 Ax0+By0+C

  3. F = ρ g V F= \rho g V F=ρgV

    W = F ⋅ S W = F · S W=FS

    其中:S表示位移

  4. 压 强 : p = p g h 压强:p = pgh p=pgh

    压 力 : F = p ⋅ s 压力:F = p·s F=ps

    其中:s表示面积

  5. 正弦函数的通式:$ y = A \sin (\omega x +t)$

    周期: T = 2 π ω T = {2 \pi \over \omega} T=ω2π

  6. cos^n x

    当n是偶数时,可设n=2k,k是整数;由于[cos(x+π)](2k)=[(-cosx)²]k=(cosx)(2k);故周期

    为π;

    当n为奇数时,可设n=2k+1,这时[cos(x+2π)](2k+1)=(cosx)(2k+1)=(cosx)(2k+1);故周期为

    2π;

  7. ∫ 0 π sin ⁡ n x d x = 2 ∫ 0 π 2 sin ⁡ n x d x \int_0^{\pi} \sin ^n x dx = 2 \int_0^{{\pi \over 2}} \sin^n x dx 0πsinnxdx=202πsinnxdx

    ∫ 0 π cos ⁡ n x d x = { 0 , n 为 奇 数 2 ∫ 0 π 2 cos ⁡ n x d x , n 为 偶 数 \int_0^{\pi} \cos ^ n x dx = \begin{cases}0, & n 为奇数 \\ 2 \int_0^{\pi \over 2} \cos ^n x dx, & n为偶数 \end{cases} 0πcosnxdx={0,202πcosnxdx,nn

在这里插入图片描述

  1. 当被积函数为 a sin ⁡ x + b cos ⁡ x c sin ⁡ x + d cos ⁡ x {a \sin x +b \cos x \over c \sin x + d \cos x } csinx+dcosxasinx+bcosx时,一般令

    a sin ⁡ x + b cos ⁡ x = A ( c sin ⁡ x + d cos ⁡ x ) + B ( c sin ⁡ x + d cos ⁡ x ) ′ a \sin x + b \cos x = A(c \sin x + d \cos x ) + B (c \sin x + d \cos x )' asinx+bcosx=A(csinx+dcosx)+B(csinx+dcosx)

    定A、B的值,之后拆成两项计算。

  2. sin ⁡ ( k π 2 ± α ) \sin ({k \pi \over 2 } \pm \alpha) sin(2kπ±α)

    奇变偶不变,符号看象限。

    奇偶是k的奇偶。

    例, sin ⁡ ( π 2 − α ) = cos ⁡ α \sin ( {\pi \over 2} - \alpha) = \cos \alpha sin(2πα)=cosα

    sin ⁡ ( π − α ) = sin ⁡ α \sin ( \pi - \alpha) = \sin \alpha sin(πα)=sinα

    sin ⁡ ( π + α ) = − sin ⁡ α \sin ( \pi + \alpha) = - \sin \alpha sin(π+α)=sinα

  3. 变量代换的选取原则:区间不变

    ∫ a b f ( x ) d x = x = a + b − t ∫ a b f ( a + b − t ) d t \int_a^b f(x)dx \xlongequal{x = a+b -t} \int_a^b f(a+b-t)dt abf(x)dxx=a+bt abf(a+bt)dt

    【注】原函数不好找,或者原函数根本找不出来的时候用这个技巧。

    【注】的到两个相等的积分,求积分的时候左右相加。

  4. 连续,可积,存在原函数的关系

    iShot2020-10-27下午07.57.12

  5. 各种线

    ①星形线

    iShot2020-10-31下午05.25.54

    { x = a cos ⁡ 3 θ y = a sin ⁡ 3 θ \begin{cases}x = a\cos^3 \theta \\ y = a\sin^3 \theta \end{cases} {x=acos3θy=asin3θ

    ②心形线

    iShot2020-10-31下午05.37.14

    ③摆线

    iShot2020-10-31下午05.49.59

    { x = a ( t − sin ⁡ t ) y = a ( 1 − cos ⁡ t ) \begin{cases}x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} {x=a(tsint)y=a(1cost)

iShot2020-10-31下午07.34.59

​ ④双纽线

908fa0ec08fa513d4aa2e3ed366d55fbb2fbd9fd

( x 2 + y 2 ) 2 = a 2 ( x 2 − y 2 ) (x^2+y^2)^2=a^2(x^2-y^2) (x2+y2)2=a2(x2y2)

r 2 = a 2 cos ⁡ 2 θ r^2=a^2 \cos 2 \theta r2=a2cos2θ

注意点

  1. 若题设f(x)为连续函数,可以直接让 f ( x ) ≡ 1 f(x) \equiv 1 f(x)1

  2. ∫ − 1 1 x d x = 0 \int_{-1}^{1} x dx = 0 11xdx=0积分等于0,上下限不一定相等。

    要使上下限相等。则:

    ∫ a b f ( x ) d x = 0 , 且 f ( x ) > 0 或 f ( x ) < 0 ⇒ a = b \int_{a}^{b} f(x)dx = 0, 且f(x)>0或f(x)<0 \Rightarrow a = b abf(x)dx=0,f(x)>0f(x)<0a=b

  3. $ \sqrt{x^2}=|x|$做定积分,平方开放一定要加绝对值,然后分区间拿掉绝对值。

  4. 如果上下限差一个常数,则可以用积分中值定理计算。

  5. 带有绝对值的积分怎么处理,分区间拿掉绝对值。

  6. ∫ 0 + ∞ e − x 2 d x \int_0^{+ \infty} e^{-x^2}dx 0+ex2dx敛散性

    因为 ∫ 0 + ∞ 1 x 2 d x \int_0^{ + \infty} {1 \over x^2}dx 0+x21dx收敛,又 1 e x 2 < 1 x 2 {1 \over e^{x^2}} < {1 \over x^2} ex21<x21

    大的收敛,小的必收敛,所以 ∫ 0 + ∞ e − x 2 d x \int_0^{+ \infty} e^{-x^2}dx 0+ex2dx收敛。

  7. 用牛顿莱布尼茨公式的时候一定要注意:

    $\int_a^b f(x)dx = F(x)|_a^b $

    F ( x ) F(x) F(x)一定要是 [ a , b ] [a,b] [a,b]上的原函数,如果 F ( x ) F(x) F(x) [ a , b ] [a,b] [a,b]上存在没有定义的点,则 F ( x ) F(x) F(x)不是

    f ( x ) f(x) f(x)的原函数。

  8. 变量代换之后先别急着d出来,可以先接一个分部积分。

  9. 加项减项的时候优先考虑分母的元素相加减。

易错点

  1. 定积分平方开方一定要加绝对值。(三角代换平方开方不用考虑正负号)

    【十七讲例3】 cos ⁡ 2 x = ∣ cos ⁡ x ∣ \sqrt{\cos ^2 x} = |\cos x| cos2x =cosx在不同区间上的正负是不一样的,所以要分区间拿掉

    绝对值。

  2. 在对称区间不能用奇偶性的函数形式:

    【2012】 ∫ − 1 1 t ( 1 + t ) 4 d t \int_{-1}^1 t(1+t)^4dt 11t(1+t)4dt

    【注】这里要用分部积分计算,不能直接等于0。

归纳

  1. sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin 2x = 2\sin x \cos x sin2x=2sinxcosx

    cos ⁡ 2 x = cos ⁡ 2 x − sin ⁡ 2 x \cos 2x = \cos^2 x - \sin^2 x cos2x=cos2xsin2x

在这里插入图片描述

∫ 0 π 1 − cos ⁡ x d x = ∫ 0 π 2 sin ⁡ 2 x 2 d x \int_0^{\pi}\sqrt{1 - \cos x}dx = \int_0^{\pi} \sqrt{2 \sin^2{x \over 2}}dx 0π1cosx dx=0π2sin22x dx

∫ 0 π 1 + cos ⁡ x d x = ∫ 0 π 2 cos ⁡ 2 x 2 \int_0^{\pi}\sqrt{1+ \cos x} dx = \int_0^{\pi} \sqrt{2 \cos^2 {x \over 2}} 0π1+cosx dx=0π2cos22x

考点

  1. 变上限积分的 0 0 {0 \over 0} 00极限,有三种方法求解:

    ①洛必达

    ②等价代换

    ③积分中值定理

  2. 已知 f ( a ) = 0 f(a)=0 f(a)=0,要联系 f ( x ) f(x) f(x) f ′ ( x ) f'(x) f(x)

    ①牛顿莱布尼兹公式:

    f ( x ) = ∫ a x f ′ ( t ) d t = f ( x ) − f ( a ) = f ( x ) f(x) = \int_a^x f'(t)dt = f(x)-f(a) = f(x) f(x)=axf(t)dt=f(x)f(a)=f(x)

    ②还可以用微分中值定理

    ∣ f ( x ) ∣ = ∣ f ( x ) − f ( a ) ∣ = ∣ f ′ ( ξ ) ∣ ( x − a ) ≤ m a x ∣ f ′ ( x ) ∣ ( x − a ) |f(x)| = |f(x)- f(a)| = |f'( \xi)|(x-a) \leq max|f'(x)|(x-a) f(x)=f(x)f(a)=f(ξ)(xa)maxf(x)(xa)

经典错误

  1. iShot2020-10-31下午04.17.57

    去绝对值时,经典错误

    iShot2020-10-31下午04.20.42

    此时上限 x ≥ 0 x \geq 0 x0,你的t是从-1到上限,所以在 ( − 1 , x ) (-1, x) (1,x)中t任然是有负有正,

    f ( x ) = ∫ − 1 x ( 1 − t ) d t f(x) = \int_{-1}^{x}(1-t)dt f(x)=1x(1t)dt这样处理就把t按照全是正的来处理,这样就错了。

    正确的处理:

    f ( x ) = { ∫ − 1 x ( 1 + t ) d t , − 1 ≤ x < 0 ∫ − 1 0 ( 1 + t ) d t + ∫ 0 x ( 1 − t ) d t , x ≥ 0 f(x) = \begin{cases}\int_{-1}^x (1+t)dt, & -1 \leq x < 0 \\ \int_{-1}^0(1+t)dt + \int_0^x(1-t)dt, & x \geq 0 \end{cases} f(x)={1x(1+t)dt,10(1+t)dt+0x(1t)dt,1x<0x0

方法

  1. 定积分求解技巧

    ①遇到多项式,先配方,再用第二类换元

    ②遇到对称区间,先考虑奇偶性

    ③遇到根号下多项式,先考虑几何意义

    ④求抽象函数的积分,对函数两边积分【积分是一个数】

    ⑤遇到多项式,先将一部分放到d后面,然后凑微分,然后配方

    ⑥求旋转体的体积用 V = 2 π ∬ D r ( x , y ) d σ V = 2 \pi \iint \limits_D r(x,y)d \sigma V=2πDr(x,y)dσ

  2. 定积分不等式中有a和b

    ①移项构造新函数

    ②将b换为x

    ③新函数求导

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值