文章目录
二重积分
二重积分的性质
性质1(不等式)
(1)在D上若 f ( x , y ) ≤ f ( x , y ) f(x,y) \leq f(x,y) f(x,y)≤f(x,y),则
∬ D f ( x , y ) d σ ≤ ∬ D f ( x , y ) d σ \iint\limits_{D}f(x,y)d \sigma \leq \iint\limits_{D}f(x,y)d \sigma D∬f(x,y)dσ≤D∬f(x,y)dσ
(2)若在D上有 m ≤ f ( x , y ) ≤ M m \leq f(x,y) \leq M m≤f(x,y)≤M,则
m S ≤ ∬ D f ( x , y ) d σ ≤ M S mS \leq \iint\limits_{D}f(x,y)d \sigma \leq MS mS≤D∬f(x,y)dσ≤MS
其中S为区域D的面积。
(3) ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint\limits_{D}f(x,y)d \sigma| \leq \iint\limits_{D}|f(x,y)| d \sigma ∣D∬f(x,y)dσ∣≤D∬∣f(x,y)∣dσ
性质2(中值定理)
设函数 f ( x , y ) f(x,y) f(x,y)在闭区域D上连续,S为区域D的面积,则在D上至少存在一点 ( ξ , η ) (\xi, \eta) (ξ,η),使得
∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ S \iint\limits_{D}f(x,y)d \sigma = f(\xi, \eta)· S D∬f(x,y)dσ=f(ξ,η)⋅S
二重积分的计算
-
直角坐标
(1)X型
D = { ( x , y ) ∣ a ≤ x ≤ b , φ 1 ( x ) ≤ y ≤ φ 2 ( x ) } D = \{(x,y)|a \leq x \leq b, \varphi_1(x) \leq y \leq \varphi_2(x) \} D={(x,y)∣a≤x≤b,φ1(x)≤y≤φ2(x)}
∬ D f ( x , y ) d σ = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \iint\limits_{D}f(x,y)d \sigma = \int_{a}^{b}dx \int_{ \varphi_1(x)}^{\varphi_2(x)}f(x,y)dy D∬f(x,y)dσ=∫abdx∫φ1(x)φ2(x)f(x,y)dy
(2)Y型
D = { ( x , y ) ∣ α ≤ y ≤ β , ψ 1 ( y ) ≤ x ≤ ψ 2 ( y ) } D = \{(x,y)|\alpha \leq y \leq \beta , \psi_1(y) \leq x \leq \psi_2(y) \} D={(x,y)∣α≤y≤β,ψ1(y)≤x≤ψ2(y)}
∬ D f ( x , y ) d σ = ∫ α β d y ∫ ψ 1 ( y ) ψ 2 ( y ) f ( x , y ) d x \iint\limits_{D}f(x,y)d \sigma = \int_{\alpha}^{\beta}dy \int_{\psi_1(y)}^{\psi_2(y)}f(x,y)dx D∬f(x,y)dσ=∫αβdy∫ψ1(y)ψ2(y)f(x,y)dx
【注】后积先定限,限内画条线,先交写下限,后交写上限。
-
极坐标
(1)先 ρ \rho ρ后 θ \theta θ
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ φ 1 ( x ) φ 2 ( x ) f ( r cos θ , r sin θ ) r d r \iint\limits_{D}f(x,y)d \sigma = \int_{ \alpha}^{\beta}d\theta \int_{\varphi_1(x)}^{\varphi_2(x)} f( r\cos \theta, r \sin \theta)r dr D∬f(x,y)dσ=∫αβdθ∫φ1(x)φ2(x)f(rcosθ,rsinθ)rdr
【注】 d σ = d r ⋅ r d θ d \sigma = dr·rd \theta dσ=dr⋅rdθ
适合用极坐标计算的二重积分的特征
①适合用极坐标计算的被积函数:
f ( x 2 + y 2 ) , f ( y x ) , f ( x y ) f( \sqrt{x^2+y^2}),f({y \over x}),f({x \over y}) f(x2+y2),f(xy),f(yx)
②适合用极坐标的积分域:如
x 2 + y 2 ≤ R 2 x^2+y^2 \leq R^2 x2+y2≤R2
r 2 ≤ x 2 + y 2 ≤ R 2 r^2 \leq x^2+y^2 \leq R^2 r2≤x2+y2≤R2
x 2 + y 2 ≤ 2 a x x^2 + y^2 \leq 2ax x2+y2≤2ax
x 2 + y 2 ≤ 2 b y x^2 +y^2 \leq 2by x2+y2≤2by
③如果是偏心圆,先将圆心 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)移到坐标原点
x − x 0 = r cos θ x -x_0 = r \cos \theta x−x0=rcosθ
y − y 0 = r sin θ y - y_0 = r \sin \theta y−y0=rsinθ
然后积分: ∫ 0 2 π d θ ∫ 0 R r d r \int_0^{2 \pi} d \theta \int_0^{R} r dr ∫02πdθ∫0Rrdr
-
利用对称性和奇偶性计算
设 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上连续
(1)若D关于x轴对称,则
∬ D f ( x , y ) d x d y = { 0 , f ( x , y ) 对 y 为 奇 函 数 , 即 f ( x , − y ) = − f ( x , y ) , ∀ ( x , y ) ∈ D 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) 对 y 为 偶 函 数 , 即 f ( x , − y ) = f ( x , y ) , ∀ ( x , y ) ∈ D \iint\limits_{D}f(x,y)dxdy=\begin{cases}0,&f(x,y)对y为奇函数,即f(x,-y)= -f(x,y), \forall (x,y) \in D \\ 2 \iint\limits_{D_1}f(x,y)dxdy, & f(x,y)对y为偶函数,即f(x,-y)= f(x,y), \forall(x,y) \in D\end{cases} D∬f(x,y)dxdy=⎩⎨⎧0,2D1∬f(x,y)dxdy,f(x,y)对y为奇函数,即f(x,−y)=−f(x,y),∀(x,y)∈Df(x,y)对y为偶函数,即f(x,−y)=f(x,y),∀(x,y)∈D
(2) 若D关于y轴对称,则
∬ D f ( x , y ) d x f y = { 0 , f ( x , y ) 对 x 为 奇 函 数 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) 对 x 为 偶 函 数 \iint\limits_{D}f(x,y)dxfy= \begin{cases}0, & f(x,y)对x为奇函数 \\ 2 \iint\limits_{D_1}f(x,y)dxdy, & f(x,y)对x为偶函数\end{cases} D∬f(x,y)dxfy=⎩⎨⎧0,2D1∬f(x,y)dxdy,f(x,y)对x为奇函数f(x,y)对x为偶函数
(3)若D关于原点对称 ( ( x , y ) ∈ D ⇔ ( − x , − y ) ∈ D ) ((x,y) \in D \Leftrightarrow (-x,-y) \in D) ((x,y)∈D⇔(−x,−y)∈D),则
∬ D f ( x , y ) d x d y = { 0 , f ( x , y ) 关 于 ( x , y ) 为 奇 函 数 , 即 f ( − x , − y ) = − f ( x , y ) , ∀ ( x , y ) ∈ D 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) 关 于 ( x , y ) 为 偶 函 数 , 即 f ( − x , − y ) = f ( x , y ) , ∀ ( x , y ) ∈ D \iint\limits_{D}f(x,y)dxdy= \begin{cases}0, &f(x,y)关于(x,y)为奇函数,即f(-x,-y) = -f(x,y), \forall (x,y) \in D \\ 2 \iint\limits_{D_1}f(x,y)dxdy,&f(x,y)关于(x,y)为偶函数,即f(-x,-y) = f(x,y), \forall (x,y) \in D\end{cases} D∬f(x,y)dxdy=⎩⎨⎧0,2D1∬f(x,y)dxdy,f(x,y)关于(x,y)为奇函数,即f(−x,−y)=−f(x,y),∀(x,y)∈Df(x,y)关于(x,y)为偶函数,即f(−x,−y)=f(x,y),∀(x,y)∈D
将D分割成关于原点对称的两个部分, D 1 D_1 D1是其中的一个,即 D = D 1 ∪ D 2 , D 1 与 D 2 关 于 原 点 对 称 D = D_1 \cup D_2,D_1与D_2关于原点对称 D=D1∪D2,D1与D2关于原点对称
-
利用变量对称性计算
若D关于 y = x y = x y=x对称,则 ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint\limits_{D}f(x,y)d \sigma = \iint\limits_{D}f(y,x)d \sigma D∬f(x,y)dσ=D∬f(y,x)dσ
知识点
-
区间不动
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^bf(x)dx= \int_a^bf(a+b-x)dx ∫abf(x)dx=∫abf(a+b−x)dx
【注】
若证明一个定积分与另一个定积分相等,且两个定积分区间相同,一般使用变换 x + t = a + b , 即 x = a + b − t x+t=a+b,即x=a+b-t x+t=a+b,即x=a+b−t
注意点
-
累次积分交换次序,积分区域从大到小,交换次序时前面要加负号。
-
累次积分有从大到小,写成二重积分加负号。
-
被积函数在区域上大于0,则积分大于0。
技巧
-
奇偶性的平移,例7,例8。
-
在证明定积分不等式的时候,只要出现两个定积分乘积的形式,都可以考虑用二重积
分的思想方法,来证明一元定积分不等式。
问题
-
二重积分什么情况下交换次序?
①当被积函数很复杂的时候
②被积函数为抽象函数无法积出来的时候
③被积函数积不出来的时候
【注】积不出的积分
∫ e x 2 d x \int e^{x^2}dx ∫ex2dx
∫ sin x x d x \int {\sin x \over x}dx ∫xsinxdx
∫ cos x x d x \int {\cos x \over x}dx ∫xcosxdx
积不出并不代表没有原函数,是它的原函数不是初等函数,无法用初等函数来表示。
方法
-
边界函数由参数方程给出。
①在直角坐标下化为累次积分。
②y和x都用参数方程代入,化成t的定积分。注意:上下限也要跟着变。
-
被积函数带有绝对值。
①分区域去掉绝对值:令绝对值里面等于0,分区域,然后根据区域里面的正负拿掉绝
对值。
-
对任意一个二重积分(没有要求积分域关于y = x对称),把被积函数和积分域,x和y通
通对调,值是不变的。
-
累次积分交换次序
①画积分域
②根据要求重新定限
【注】积分区域从大到小,前面要加负号
-
二重积分比较
①积分区域相同,谁被积函数大二重积分就大
②被积函数相同,积分区域不同:
1)被积函数为正,谁的积分区域大谁大
2)被积函数为负,谁的积分区域大谁小
-
两个一元定积分相乘不等式
①将其中之一的变量换成y,将其化成二重
②因为区域关于y=x对称,x,y对调值不变
【注】一般都是这样的思想
具体方法
1. 极坐标二重积分换序
1. 1 法一
- 交换 ∫ − π 2 π 2 d θ ∫ 0 a cos θ f ( r cos θ , r sin θ ) r d r \int_{{- \pi \over 2}}^{\pi \over 2}d \theta \int_0^{a \cos \theta} f(r \cos \theta, r \sin \theta)rdr ∫2−π2πdθ∫0acosθf(rcosθ,rsinθ)rdr的积分次序(a>0)
∫ 0 a r d r ∫ − arccos r a arccos r a f ( r cos θ , r sin θ ) d θ \int_0^a rdr \int_{- \arccos{r \over a}}^{ \arccos {r \over a}} f(r \cos \theta, r \sin \theta) d \theta ∫0ardr∫−arccosararccosarf(rcosθ,rsinθ)dθ
-
交换 ∫ − π 4 π 2 d θ ∫ 0 2 a cos θ f ( r cos θ , r sin θ ) r d r \int_{ - { \pi \over 4}}^{{ \pi \over 2}} d \theta \int_0^{2a \cos \theta }f(r \cos \theta, r \sin \theta) rdr ∫−4π2πdθ∫02acosθf(rcosθ,rsinθ)rdr的积分次序(a>0)
∫ 0 2 a r d r ∫ − π 4 arccos r 2 a f ( r cos θ , r sin θ ) d θ + ∫ 2 a 2 a r d r ∫ − arccos r 2 a arccos r 2 a f ( r cos θ , r sin θ ) d θ \int_0^{\sqrt{2}a} rdr \int_{- {\pi \over 4}}^{ \arccos {r \over 2a}} f(r \cos \theta, r \sin \theta) d \theta+\int_{\sqrt{2}a}^{2a} rdr \int_{- \arccos{r \over 2a}}^{ \arccos {r \over 2a}} f(r \cos \theta, r \sin \theta) d \theta ∫02ardr∫−4πarccos2arf(rcosθ,rsinθ)dθ+∫2a2ardr∫−arccos2ararccos2arf(rcosθ,rsinθ)dθ
-
交换 ∫ 0 π 2 d θ ∫ 2 cos θ 4 cos θ f ( r cos θ , r sin θ ) r d r \int_0^{ \pi \over 2} d \theta \int_{2 \cos \theta}^{4 \cos \theta} f(r \cos \theta, r \sin \theta) rdr ∫02πdθ∫2cosθ4cosθf(rcosθ,rsinθ)rdr的积分次序
∫ 0 2 r d r ∫ arccos r 2 arccos r 4 f ( r cos θ , r sin θ ) d θ + ∫ 2 4 r d r + ∫ 0 arccos r 4 f ( r cos θ , r sin θ ) d θ \int_0^2 rdr \int_{ \arccos { r \over 2}}^{ \arccos { r \over 4}} f(r \cos \theta , r \sin \theta) d \theta + \int_2^4 rdr + \int_0^{\arccos {r \over 4}} f( r \cos \theta, r \sin \theta) d \theta ∫02rdr∫arccos2rarccos4rf(rcosθ,rsinθ)dθ+∫24rdr+∫0arccos4rf(rcosθ,rsinθ)dθ
1.2 法二

2. 二重积分定限问题
2.1 三角函数
反正弦函数与反余弦函数
反正切函数与反余切函数
【2007.08】
y = arcsin x y = \arcsin x y=arcsinx的角度范围必须在 − π 2 < x < π 2 -{\pi \over 2} < x<{\pi \over 2} −2π<x<2π
3. 怎么化二次积分为极坐标形式的积分?
直角坐标形式: ∫ 0 1 ∫ 0 x 2 f ( x , y ) d y \int_0^1 \int_0^{x^2} f(x,y)dy ∫01∫0x2f(x,y)dy
我们先固定 θ \theta θ,显然 0 ≤ θ ≤ π 4 0 \leq \theta \leq {\pi \over 4} 0≤θ≤4π,现在看看对于某个$\theta 的 的 的\rho$的变化范围:
这根过原点的射线与 y = x 2 y = x^2 y=x2和 x = 1 x=1 x=1有交点, ρ \rho ρ被夹其间,所以要在极坐标下求出这两个交
点。
我们代入 { x = ρ cos θ y = ρ sin θ \begin{cases}x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} {x=ρcosθy=ρsinθ即得到 sin θ cos 2 θ ≤ ρ ≤ 1 cos θ { \sin \theta \over \cos^2 \theta} \leq \rho \leq {1 \over \cos \theta} cos2θsinθ≤ρ≤cosθ1
也就是说
原式= ∫ 0 π 4 d θ ∫ sin θ cos 2 θ 1 cos θ f ( ρ cos θ , ρ sin θ ) ρ d ρ \int_0^{\pi \over 4} d \theta \int_{\sin \theta \over \cos^2 \theta}^{1 \over \cos \theta}f(\rho \cos \theta, \rho \sin \theta) \rho d \rho ∫04πdθ∫cos2θsinθcosθ1f(ρcosθ,ρsinθ)ρdρ