异步电机控制笔记

异步电机控制笔记

本笔记讨论异步电机的控制算法。先对异步电机在ABC坐标系以及DQ0坐标系下的电压方程与磁链方程进行推导,然后对常用的旋转坐标系下的异步电机模型进行了分析。

为了实现异步电机的矢量控制,对异步电机在转子磁场定向下的状态方程模型进行了推导,并基于状态方程模型讨论了三闭环控制算法的实现,以及MTPA与MTPV的实现方法。然后对开环的磁链估计器与闭环的磁链观测器进行了讨论。

为了实现异步电机的直接转矩控制,对异步电机使用磁链表示的状态方程模型进行了推导,并基于状态方程推导了直接转矩控制的实现方法。

异步电机模型

本节针对异步电机的矢量控制,对异步电机在磁场定向下的模型进行了简要的推导。

异步电机ABC模型

将ASM在ABC坐标系下的方程列出,可以得到

U a b c = R I a b c + d Ψ a b c d t Ψ a b c = L a b c I a b c T e = 1 2 n p I a b c T ∂ L a b c ∂ θ I a b c \begin{aligned} & U_{abc} = RI_{abc} + \frac{d\Psi_{abc}}{dt} \\ & \Psi_{abc} = L_{abc}I_{abc} \\ & T_e = \frac{1}{2}n_p I_{abc}^T \frac{\partial L_{abc}}{\partial \theta}I_{abc} \end{aligned} Uabc=RIabc+dtdΨabcΨabc=LabcIabcTe=21npIabcTθLabcIabc

其中, U a b c = [ u s a , u s b , u s c , u r a , u r b , u r c ] T , I a b c = [ i s a , i s b , i s c , i r a , i r b , i r c ] T , Ψ a b c = [ ψ s a , ψ s b , ψ s c , ψ r a , ψ r b , ψ r c ] T U_{abc}=[u_{sa}, u_{sb}, u_{sc}, u_{ra}, u_{rb}, u_{rc}]^T, I_{abc}=[i_{sa}, i_{sb}, i_{sc}, i_{ra}, i_{rb}, i_{rc}]^T, \Psi_{abc}=[\psi_{sa}, \psi_{sb}, \psi_{sc}, \psi_{ra}, \psi_{rb}, \psi_{rc}]^T Uabc=[usa,usb,usc,ura,urb,urc]T,Iabc=[isa,isb,isc,ira,irb,irc]T,Ψabc=[ψsa,ψsb,ψsc,ψra,ψrb,ψrc]T分别为电压,电流与磁链向量。

对磁链方程求导,并联立电压方程消去磁链 Ψ a b c \Psi_{abc} Ψabc可以得到

d I a b c d t = L a b c − 1 ( U a b c − R I a b c ) \frac{dI_{abc}}{dt} = L_{abc}^{-1}(U_{abc}-RI_{abc}) dtdIabc=Labc1(UabcRIabc)

从而得到电机的状态方程为

{ d I a b c d t = L a b c − 1 ( U a b c − R I a b c ) d ω d t = n p J ( 1 2 n p I a b c T ∂ L a b c ∂ θ I a b c − T L − B ω n p ) d θ d t = ω \left \{ \begin{aligned} & \frac{dI_{abc}}{dt} = L_{abc}^{-1}(U_{abc}-RI_{abc}) \\ & \frac{d\omega}{dt} = \frac{n_p}{J}(\frac{1}{2}n_p I_{abc}^T \frac{\partial L_{abc}}{\partial \theta}I_{abc} - T_L - \frac{B\omega}{n_p}) \\ & \frac{d\theta}{dt} = \omega \end{aligned} \right . dtdIabc=Labc1(UabcRIabc)dtdω=Jnp(21npIabcTθLabcIabcTLnpBω)dtdθ=ω

其中, n p n_p np为电机极对数, T L T_L TL为负载转矩, B B B为机械阻尼系数, θ \theta θ为转子电角度, ω \omega ω为转子电转速。

异步电机不需要考虑凸极问题,则在不考虑饱和,且只考虑气隙磁场的基波分量时,电感矩阵表示为

L a b c = [ L s s L s r L s r T L r r ] L s s = [ L s σ + M − M / 2 − M / 2 − M / 2 L s σ + M − M / 2 − M / 2 − M / 2 L s σ + M ] L s r = M [ c o s ( θ ) c o s ( θ + 2 π / 3 ) c o s ( θ + 4 π / 3 ) c o s ( θ + 4 π / 3 ) c o s ( θ ) c o s ( θ + 2 π / 3 ) c o s ( θ + 2 π / 3 ) c o s ( θ + 4 π / 3 ) c o s ( θ ) ] L r r = [ L r σ + M − M / 2 − M / 2 − M / 2 L r σ + M − M / 2 − M / 2 − M / 2 L r σ + M ] \begin{aligned} L_{abc} & = \left[\begin{matrix} L_{ss} & L_{sr} \\ L_{sr}^T & L_{rr}\\ \end{matrix}\right] \\ \\ L_{ss} & = \left[\begin{matrix} L_{s\sigma}+M&-M/2&-M/2\\ -M/2&L_{s\sigma}+M&-M/2\\ -M/2&-M/2&L_{s\sigma}+M \end{matrix}\right] \\ \\ L_{sr} & = M\left[\begin{matrix} cos(\theta) & cos(\theta+2\pi/3) & cos(\theta+4\pi/3)\\ cos(\theta+4\pi/3) & cos(\theta) & cos(\theta+2\pi/3)\\ cos(\theta+2\pi/3) & cos(\theta+4\pi/3) & cos(\theta)\\ \end{matrix}\right] \\ \\ L_{rr} & = \left[\begin{matrix} L_{r\sigma}+M&-M/2&-M/2\\ -M/2&L_{r\sigma}+M&-M/2\\ -M/2&-M/2&L_{r\sigma}+M \end{matrix}\right]\\ \end{aligned} LabcLssLsrLrr=[LssLsrTLsrLrr]=Lsσ+MM/2M/2M/2Lsσ+MM/2M/2M/2Lsσ+M=Mcos(θ)cos(θ+4π/3)cos(θ+2π/3)cos(θ+2π/3)cos(θ)cos(θ+4π/3)cos(θ+4π/3)cos(θ+2π/3)cos(θ)=Lrσ+MM/2M/2M/2Lrσ+MM/2M/2M/2Lrσ+M

其中, M M M为定子绕组通过气隙的磁链产生的自感系数, L s σ L_{s\sigma} Lsσ为定子绕组的漏感系数, L r σ L_{r\sigma} Lrσ为等效三相转子绕组的漏感系数。

电机DQ0模型

取正交变换阵如下,其中 α \alpha α为旋转参考坐标系的电角度,特别地,当参考坐标系为静止坐标系时 α \alpha α为常数。注意 α \alpha α可以取与转子电角度 θ \theta θ不同的值。

T s = 2 / 3 [ c o s ( α ) c o s ( α − 2 π / 3 ) c o s ( α − 4 π / 3 ) − s i n ( α ) − s i n ( α − 2 π / 3 ) − s i n ( α − 4 π / 3 ) 1 / 2 1 / 2 1 / 2 ] T_s = \sqrt{2/3} \left [\begin{matrix} cos(\alpha) & cos(\alpha-2\pi/3) & cos(\alpha-4\pi/3) \\ -sin(\alpha) & -sin(\alpha-2\pi/3) & -sin(\alpha-4\pi/3) \\ 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ \end{matrix} \right] Ts=2/3 cos(α)sin(α)1/2 cos(α2π/3)sin(α2π/3)1/2 cos(α4π/3)sin(α4π/3)1/2

T r = 2 / 3 [ c o s ( α − θ ) c o s ( α − θ + 2 π / 3 ) c o s ( α − θ + 4 π / 3 ) − s i n ( α − θ ) − s i n ( α − θ + 2 π / 3 ) − s i n ( α − θ + 4 π / 3 ) 1 / 2 1 / 2 1 / 2 ] T_r = \sqrt{2/3} \left [\begin{matrix} cos(\alpha - \theta) & cos(\alpha - \theta + 2\pi/3) & cos(\alpha - \theta + 4\pi/3) \\ -sin(\alpha - \theta) & -sin(\alpha - \theta + 2\pi/3) & -sin(\alpha - \theta + 4\pi/3) \\ 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ \end{matrix} \right] Tr=2/3 cos(αθ)sin(αθ)1/2 cos(αθ+2π/3)sin(αθ+2π/3)1/2 cos(αθ+4π/3)sin(αθ+4π/3)1/2

T = [ T s 0 0 T r ] T = \left [\begin{matrix} T_s & 0 \\ 0 & T_r \\ \end{matrix} \right] T=[Ts00Tr]

U a b c , I a b c , Ψ a b c U_{abc}, I_{abc}, \Psi_{abc} Uabc,Iabc,Ψabc向量作以下的坐标变化

U d q 0 = T U a b c I d q 0 = T I a b c Ψ d q 0 = T Ψ a b c \begin{gathered} & U_{dq0} = T U_{abc} \\ & I_{dq0} = T I_{abc} \\ & \Psi_{dq0} = T \Psi_{abc} \\ \end{gathered} Udq0=TUabcIdq0=TIabcΨdq0=TΨabc

其中, U d q 0 = [ u s d , u s q , u s 0 , u r d , u r q , u r 0 ] T , I d q 0 = [ i s d , i s q , i s 0 , i r d , i r q , i r 0 ] T , Ψ d q 0 = [ ψ s d , ψ s q , ψ s 0 , ψ r d , ψ r q , ψ r 0 ] T U_{dq0}=[u_{sd}, u_{sq}, u_{s0}, u_{rd}, u_{rq}, u_{r0}]^T, I_{dq0}=[i_{sd}, i_{sq}, i_{s0}, i_{rd}, i_{rq}, i_{r0}]^T, \Psi_{dq0}=[\psi_{sd}, \psi_{sq}, \psi_{s0}, \psi_{rd}, \psi_{rq}, \psi_{r0}]^T Udq0=[usd,usq,us0,urd,urq,ur0]T,Idq0=[isd,isq,is0,ird,irq,ir0]T,Ψdq0=[ψsd,ψsq,ψs0,ψrd,ψrq,ψr0]T分别为坐标变化下的电压,电流与磁链向量。

则异步电机在Park变化下的模型为

T U a b c = R T I a b c + ω ( T ∂ L a b c ∂ θ T − 1 ) T I a b c + ( T L a b c T − 1 ) T d I a b c d t = R T I a b c + ω ( T ∂ L a b c ∂ θ T − 1 ) T I a b c + ( T L a b c T − 1 ) d ( T I a b c ) d t + T L ( ∂ T − 1 ∂ α d α d t + ∂ T − 1 ∂ θ d θ d t ) ( T I a b c ) \begin{aligned} T U_{abc} =& R T I_{abc} + \omega (T \frac{\partial L_{abc}}{\partial \theta}T^{-1}) T I_{abc} + (T L_{abc} T^{-1}) T \frac{dI_{abc}}{dt} \\ =& R T I_{abc} + \omega (T \frac{\partial L_{abc}}{\partial \theta}T^{-1}) T I_{abc} + (T L_{abc} T^{-1}) \frac{d(TI_{abc})}{dt} \\ &+ T L (\frac{\partial T^{-1}}{\partial\alpha}\frac{d\alpha}{dt} + \frac{\partial T^{-1}}{\partial\theta}\frac{d\theta}{dt}) (TI_{abc}) \end{aligned} TUabc==RTIabc+ω(TθLabcT1)TIabc+(TLabcT1)TdtdIabcRTIabc+ω(TθLabcT1)TIabc+(TLabcT1)dtd(TIabc)+TL(αT1dtdα+θT1dtdθ)(TIabc)

化简得到电压方程如下

U d q 0 = R I d q 0 + L d q 0 d I d q 0 d t + ω L d q 0 ′ I d q 0 + d α d t L d q 0 ′ ′ I d q 0 U_{dq0} = RI_{dq0} + L_{dq0}\frac{dI_{dq0}}{dt} + \omega L_{dq0}'I_{dq0} + \frac{d\alpha}{dt} L_{dq0}''I_{dq0} Udq0=RIdq0+Ldq0dtdIdq0+ωLdq0Idq0+dtdαLdq0Idq0

得到的状态方程为

d d t I d q 0 = L d q 0 − 1 ( U d q 0 − R I d q 0 − ω L d q 0 ′ I d q 0 − d α d t L d q 0 ′ ′ I d q 0 ) \frac{d}{dt} I_{dq0} = L_{dq0}^{-1}(U_{dq0}-RI_{dq0}-\omega L_{dq0}'I_{dq0} - \frac{d\alpha}{dt} L_{dq0}''I_{dq0}) dtdIdq0=Ldq01(Udq0RIdq0ωLdq0Idq0dtdαLdq0Idq0)

其中记 L d q 0 = T L a b c T − 1 , L d q 0 ′ = ( T ∂ L a b c ∂ θ T − 1 + T L a b c ∂ T − 1 ∂ θ ) , L d q 0 ′ ′ = T L a b c ∂ T − 1 ∂ α L_{dq0} = T L_{abc} T^{-1}, L_{dq0}' = (T \frac{\partial L_{abc}}{\partial \theta}T^{-1} + T L_{abc} \frac{\partial T^{-1}}{\partial\theta}), L_{dq0}'' = T L_{abc} \frac{\partial T^{-1}}{\partial\alpha} Ldq0=TLabcT1,Ldq0=(TθLabcT1+TLabcθT1),Ldq0=TLabcαT1,对应的变换结果如下。

L d q 0 = [ L s 0 0 L m 0 0 0 L s 0 0 L m 0 0 0 L s σ 0 0 0 L m 0 0 L r 0 0 0 L m 0 0 L r 0 0 0 0 0 0 L r σ ] L_{dq0} = \left [\begin{matrix} L_s & 0 & 0 & L_m & 0 & 0 \\ 0 & L_s & 0 & 0 & L_m & 0 \\ 0 & 0 & L_{s\sigma} & 0 & 0 & 0 \\ L_m & 0 & 0 & L_r & 0 & 0 \\ 0 & L_m & 0 & 0 & L_r & 0 \\ 0 & 0 & 0 & 0 & 0 & L_{r\sigma} \\ \end{matrix} \right ] Ldq0=Ls00Lm000Ls00Lm000Lsσ000Lm00Lr000Lm00Lr000000Lrσ

L d q 0 ′ = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L m 0 0 L r 0 − L m 0 0 − L r 0 0 0 0 0 0 0 0 ] L_{dq0}' = \left [\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & L_m & 0 & 0 & L_r & 0\\ -L_m & 0 & 0 & -L_r & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix} \right ] Ldq0=0000Lm0000Lm000000000000Lr0000Lr00000000

L d q 0 ′ ′ = [ 0 − L s 0 0 − L m 0 L s 0 0 L m 0 0 0 0 0 0 0 0 0 − L m 0 0 − L r 0 L m 0 0 L r 0 0 0 0 0 0 0 0 ] L_{dq0}'' = \left [\begin{matrix} 0 & -L_s & 0 & 0 & -L_m & 0\\ L_s & 0 & 0 & L_m & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -L_m & 0 & 0 & -L_r & 0\\ L_m & 0 & 0 & L_r & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix} \right ] Ldq0=0Ls00Lm0Ls00Lm000000000Lm00Lr0Lm00Lr00000000

其中, L s = L s σ + 3 / 2 M , L m = 3 / 2 M , L r = L r σ + 3 / 2 M L_s = L_{s\sigma} + 3/2M, L_m = 3/2M, L_r = L_{r\sigma} + 3/2M Ls=Lsσ+3/2M,Lm=3/2M,Lr=Lrσ+3/2M

转矩方程为

τ = n p L m ( i s q i r d − i s d i r q ) \tau = n_p L_m(i_{sq}i_{rd} - i_{sd}i_{rq}) τ=npLm(isqirdisdirq)

在后面的推导中,如果不作特别声明,则没有下标的大写符号均表示在坐标变换下的变量向量。

电机在正交静止坐标系下的方程

在上面的旋转变换中取 α = 0 \alpha = 0 α=0,并不考虑 0 0 0轴上的变量,则有状态方程为

U = R I + L d q 0 ⋅ p I + ω L d q 0 ′ I U = RI + L_{dq0} \cdot pI + \omega L_{dq0}'I U=RI+Ldq0pI+ωLdq0I

L d q 0 = [ L s 0 0 L m 0 0 0 L s 0 0 L m 0 0 0 L s σ 0 0 0 L m 0 0 L r 0 0 0 L m 0 0 L r 0 0 0 0 0 0 L r σ ] L_{dq0} = \left [\begin{matrix} L_s & 0 & 0 & L_m & 0 & 0 \\ 0 & L_s & 0 & 0 & L_m & 0 \\ 0 & 0 & L_{s\sigma} & 0 & 0 & 0 \\ L_m & 0 & 0 & L_r & 0 & 0 \\ 0 & L_m & 0 & 0 & L_r & 0 \\ 0 & 0 & 0 & 0 & 0 & L_{r\sigma} \\ \end{matrix} \right ] Ldq0=Ls00Lm000Ls00Lm000Lsσ000Lm00Lr000Lm00Lr000000Lrσ

L d q 0 ′ = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L m 0 0 L r 0 − L m 0 0 − L r 0 0 0 0 0 0 0 0 ] L_{dq0}' = \left [\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & L_m & 0 & 0 & L_r & 0\\ -L_m & 0 & 0 & -L_r & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix} \right ] Ldq0=0000Lm0000Lm000000000000Lr0000Lr00000000

除去零轴分量,可以得到电压方程为

U = [ R s R s ω L m R r ω L r − ω L m − ω L r R r ] I + [ L s L m L s L m L m L r L m L r ] p I U = \left [\begin{matrix} R_s & & & \\ & R_s & &\\ & \omega L_m & R_r & \omega L_r \\ -\omega L_m & & -\omega L_r & R_r \\ \end{matrix} \right ] I + \left [\begin{matrix} L_s& & L_m& \\ &L_s & & L_m\\ L_m & &L_r & \\ & L_m & &L_r \\ \end{matrix} \right ] pI U=RsωLmRsωLmRrωLrωLrRrI+LsLmLsLmLmLrLmLrpI

转矩方程为

τ = n p L m ( i s β i r α − i s α i r β ) \tau = n_p L_m(i_{s\beta}i_{r\alpha} - i_{s\alpha}i_{r\beta}) τ=npLm(isβirαisαirβ)

注意到在静止坐标系中,旋转的电机中的电压电流均为正弦量,不适合设计控制器进行控制。因此对于异步电机,一般不在静止正交坐标系 α β 0 \alpha\beta 0 αβ0中进行控制。但由于在正交静止坐标中,电机的模型最为简单,因此进行电机仿真时可以使用该坐标系下的状态方程模型。

在正交静止坐标系下的电机状态方程如下。

I ˙ = ( A 1 + ω A 2 ) I + B U \dot I = (A_1 + \omega A_2) I + BU I˙=(A1+ωA2)I+BU

A 1 = − L − 1 R = ( − R s σ L s 0 L m   R r σ L s L r 0 0 − R s σ L s 0 L m   R r σ L s L r L m   R s σ L s L r 0 − R r σ L r 0 0 L m   R s σ L s L r 0 − R r σ L r ) A_1 = -L^{-1}R = \left(\begin{array}{cccc} -\frac{R_{s}}{\sigma L_s} & 0 & \frac{L_{m}\,R_{r}}{\sigma L_s L_r} & 0\\ 0 & -\frac{R_{s}}{\sigma L_s} & 0 & \frac{L_{m}\,R_{r}}{\sigma L_s L_r}\\ \frac{L_{m}\,R_{s}}{\sigma L_s L_r} & 0 & -\frac{R_{r}}{\sigma L_r} & 0\\ 0 & \frac{L_{m}\,R_{s}}{\sigma L_s L_r} & 0 & -\frac{R_{r}}{\sigma L_r} \end{array}\right) A1=L1R=σLsRs0σLsLrLmRs00σLsRs0σLsLrLmRsσLsLrLmRr0σLrRr00σLsLrLmRr0σLrRr

A 2 = − L − 1 L 1 = ( 0 L m 2 σ L s L r 0 L m σ L s − L m 2 σ L s L r 0 − L m σ L s 0 0 − L m σ L r 0 − 1 σ L m σ L r 0 1 σ 0 ) A_2 = -L^{-1}L_1 = \left(\begin{array}{cccc} 0 & \frac{{L_{m}}^2}{\sigma L_s L_r} & 0 & \frac{L_{m}}{\sigma L_s}\\ -\frac{{L_{m}}^2}{\sigma L_s L_r} & 0 & -\frac{L_{m}}{\sigma L_s} & 0\\ 0 & -\frac{L_{m}}{\sigma L_r} & 0 & -\frac{1}{\sigma}\\ \frac{L_{m}}{\sigma L_r} & 0 & \frac{1}{\sigma} & 0 \end{array}\right) A2=L1L1=0σLsLrLm20σLrLmσLsLrLm20σLrLm00σLsLm0σ1σLsLm0σ10

B = L − 1 = ( 1 σ L s 0 − L m σ L s L r 0 0 1 σ L s 0 − L m σ L s L r − L m σ L s L r 0 1 σ L r 0 0 − L m σ L s L r 0 1 σ L r ) B = L^{-1} = \left(\begin{array}{cccc} \frac{1}{\sigma L_s } & 0 & -\frac{L_{m}}{\sigma L_s L_r} & 0\\ 0 & \frac{1}{\sigma L_s} & 0 & -\frac{L_{m}}{\sigma L_s L_r}\\ -\frac{L_{m}}{\sigma L_s L_r} & 0 & \frac{1}{\sigma L_r} & 0\\ 0 & -\frac{L_{m}}{\sigma L_s L_r} & 0 & \frac{1}{\sigma L_r} \end{array}\right) B=L1=σLs10σLsLrLm00σLs10σLsLrLmσLsLrLm0σLr100σLsLrLm0σLr1

电机在旋转坐标系下的方程

在上面的旋转变换中取非零的旋转坐标系角度 α \alpha α,并令 ω α = d α / d t \omega_\alpha = d\alpha / dt ωα=dα/dt,则有状态方程为

U = R I + L d q 0 ⋅ p I + ω L d q 0 ′ I + ω α L d q 0 ′ ′ I U = RI + L_{dq0} \cdot pI + \omega L_{dq0}'I + \omega_\alpha L_{dq0}''I U=RI+Ldq0pI+ωLdq0I+ωαLdq0I

L d q 0 = [ L s 0 0 L m 0 0 0 L s 0 0 L m 0 0 0 L s σ 0 0 0 L m 0 0 L r 0 0 0 L m 0 0 L r 0 0 0 0 0 0 L r σ ] L_{dq0} = \left [\begin{matrix} L_s & 0 & 0 & L_m & 0 & 0 \\ 0 & L_s & 0 & 0 & L_m & 0 \\ 0 & 0 & L_{s\sigma} & 0 & 0 & 0 \\ L_m & 0 & 0 & L_r & 0 & 0 \\ 0 & L_m & 0 & 0 & L_r & 0 \\ 0 & 0 & 0 & 0 & 0 & L_{r\sigma} \\ \end{matrix} \right ] Ldq0=Ls00Lm000Ls00Lm000Lsσ000Lm00Lr000Lm00Lr000000Lrσ

L d q 0 ′ = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L m 0 0 L r 0 − L m 0 0 − L r 0 0 0 0 0 0 0 0 ] L_{dq0}' = \left [\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & L_m & 0 & 0 & L_r & 0\\ -L_m & 0 & 0 & -L_r & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix} \right ] Ldq0=0000Lm0000Lm000000000000Lr0000Lr00000000

L d q 0 ′ ′ = [ 0 − L s 0 0 − L m 0 L s 0 0 L m 0 0 0 0 0 0 0 0 0 − L m 0 0 − L r 0 L m 0 0 L r 0 0 0 0 0 0 0 0 ] L_{dq0}'' = \left [\begin{matrix} 0 & -L_s & 0 & 0 & -L_m & 0\\ L_s & 0 & 0 & L_m & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -L_m & 0 & 0 & -L_r & 0\\ L_m & 0 & 0 & L_r & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{matrix} \right ] Ldq0=0Ls00Lm0Ls00Lm000000000Lm00Lr0Lm00Lr00000000

不考虑零轴分量,此时的电压方程使用 ω α \omega_\alpha ωα表示为

U = [ R s − ω α L s − ω α L m ω α L s R s ω α L m ( ω − ω α ) L m R r ( ω − ω α ) L r − ( ω − ω α ) L m − ( ω − ω α ) L r R r ] I + [ L s L m L s L m L m L r L m L r ] p I \begin{aligned} U =& \left [\begin{matrix} R_s & -\omega_\alpha L_s & & -\omega_\alpha L_m \\ \omega_\alpha L_s & R_s & \omega_\alpha L_m & \\ & (\omega-\omega_\alpha) L_m & R_r& (\omega-\omega_\alpha) L_r \\ -(\omega-\omega_\alpha) L_m & & -(\omega-\omega_\alpha) L_r & R_r \\ \end{matrix} \right ] I \\ &+ \left [\begin{matrix} L_s& & L_m& \\ &L_s & & L_m\\ L_m & &L_r & \\ & L_m & &L_r \\ \end{matrix} \right ] pI \end{aligned} U=RsωαLs(ωωα)LmωαLsRs(ωωα)LmωαLmRr(ωωα)LrωαLm(ωωα)LrRrI+LsLmLsLmLmLrLmLrpI

转矩方程为

τ = n p L m ( i s q i r d − i s d i r q ) \tau = n_p L_m(i_{sq}i_{rd} - i_{sd}i_{rq}) τ=npLm(isqirdisdirq)

下面讨论在不同的旋转坐标系下的电机方程的简化。

电机在转子磁场定向坐标系下的方程

取旋转坐标系的角度 α \alpha α为转子磁场的角度,使得转子在 q q q轴上没有磁场分量,即

L r i r d + L m i s d = ψ r L r i r q + L m i s q = 0 \begin{aligned} & L_r i_{rd} + L_m i_{sd} = \psi_r \\ & L_r i_{rq} + L_m i_{sq} = 0 \end{aligned} Lrird+Lmisd=ψrLrirq+Lmisq=0

代入电压方程有

U = [ R s − ω α L s − ω α L m ω α L s R s ω α L m 0 R r 0 − ( ω − ω α ) L m − ( ω − ω α ) L r R r ] I + [ L s L m L s L m L m L r 0 0 ] p I \begin{aligned} U =& \left [\begin{matrix} R_s & -\omega_\alpha L_s & & -\omega_\alpha L_m \\ \omega_\alpha L_s & R_s & \omega_\alpha L_m & \\ & 0 & R_r& 0 \\ -(\omega-\omega_\alpha) L_m & & -(\omega-\omega_\alpha) L_r & R_r \\ \end{matrix} \right ] I \\ &+ \left [\begin{matrix} L_s& & L_m& \\ &L_s & & L_m\\ L_m & &L_r & \\ & 0 & &0 \\ \end{matrix} \right ] pI \end{aligned} U=RsωαLs(ωωα)LmωαLsRs0ωαLmRr(ωωα)LrωαLm0RrI+LsLmLs0LmLrLm0pI

将转子磁场定向的磁场约束代入转矩方程,将转子上的电流变量消去,可以得到

τ = n p L m L r ψ r i s q \tau = n_p\frac{L_m}{L_r}\psi_ri_{sq} τ=npLrLmψrisq

联立转子 d d d轴电压方程与 d d d轴磁链约束,消去转子上的电流变量,可以得到

ψ r = L m τ r ( s + 1 τ r ) i s d \psi_r = \frac{L_m}{\tau_r(s + \frac1{\tau_r})} i_{sd} ψr=τr(s+τr1)Lmisd

此时可以分别通过控制定子 d , q d,q d,q轴电流控制转子磁链和转矩,异步电机由此等效成一个直流电机。

电机在定子磁场定向坐标系下的方程

取旋转坐标系的角度 α \alpha α为定子磁场的角度,使得定子在 q q q轴上没有磁场分量,即

L s i s d + L m i r d = ψ s L s i s q + L m i r q = 0 \begin{aligned} & L_s i_{sd} + L_m i_{rd} = \psi_s \\ & L_s i_{sq} + L_m i_{rq} = 0 \end{aligned} Lsisd+Lmird=ψsLsisq+Lmirq=0

代入电压方程有

U = [ R s 0 0 ω α L s R s ω α L m ( ω − ω α ) L m R r ( ω − ω α ) L r − ( ω − ω α ) L m − ( ω − ω α ) L r R r ] I + [ L s L m 0 0 L m L r L m L r ] p I \begin{aligned} U =& \left [\begin{matrix} R_s & 0 & & 0 \\ \omega_\alpha L_s & R_s & \omega_\alpha L_m & \\ & (\omega-\omega_\alpha) L_m & R_r& (\omega-\omega_\alpha) L_r \\ -(\omega-\omega_\alpha) L_m & & -(\omega-\omega_\alpha) L_r & R_r \\ \end{matrix} \right ] I \\ &+ \left [\begin{matrix} L_s& & L_m& \\ &0 & & 0\\ L_m & &L_r & \\ & L_m & &L_r \\ \end{matrix} \right ] pI \end{aligned} U=RsωαLs(ωωα)Lm0Rs(ωωα)LmωαLmRr(ωωα)Lr0(ωωα)LrRrI+LsLm0LmLmLr0LrpI

将定子磁场定向的磁场约束代入转矩方程,将转子上的电流变量消去,可以得到

τ = n p ψ s i s q \tau = n_p\psi_s i_{sq} τ=npψsisq

联立定子 d d d轴电压方程与 d d d轴磁链约束,消去转子上的电流变量,可以得到

ψ s = u s d − R s i s d p \psi_s = \frac{u_{sd} - R_s i_{sd}}{p} ψs=pusdRsisd

此时可以分别通过控制定子 d , q d,q d,q轴电压电流控制定子磁链和转矩,异步电机由此等效成一个直流电机。但是控制磁链时,定子转矩方程中同时含有 u s d , i s d u_{sd}, i_{sd} usd,isd项,这两项之间存在耦合,不容易进行磁链控制。

电机在气隙磁场定向坐标系下的方程

取旋转坐标系的角度 α \alpha α为气隙磁场的角度,使得气隙中在 q q q轴上没有磁场分量,即

L m i s d + L m i r d = ψ m L m i s q + L m i r q = 0 \begin{aligned} & L_m i_{sd} + L_m i_{rd} = \psi_m \\ & L_m i_{sq} + L_m i_{rq} = 0 \end{aligned} Lmisd+Lmird=ψmLmisq+Lmirq=0

代入电压方程有

U = [ R s − ω α L s σ 0 ω α L s R s ω α L m 0 R r ( ω − ω α ) L r σ − ( ω − ω α ) L m − ( ω − ω α ) L r R r ] I + [ L s L m L s σ 0 L m L r 0 L r σ ] p I \begin{aligned} U =& \left [\begin{matrix} R_s & -\omega_\alpha L_{s\sigma} & & 0 \\ \omega_\alpha L_s & R_s & \omega_\alpha L_m & \\ & 0 & R_r& (\omega-\omega_\alpha) L_{r\sigma} \\ -(\omega-\omega_\alpha) L_m & & -(\omega-\omega_\alpha) L_r & R_r \\ \end{matrix} \right ] I \\ &+ \left [\begin{matrix} L_s& & L_m& \\ &L_{s\sigma} & & 0\\ L_m & &L_r & \\ & 0 & & L_{r\sigma} \\ \end{matrix} \right ] pI \end{aligned} U=RsωαLs(ωωα)LmωαLsσRs0ωαLmRr(ωωα)Lr0(ωωα)LrσRrI+LsLmLsσ0LmLr0LrσpI

将定子磁场定向的磁场约束代入转矩方程,将转子上的电流变量消去,可以得到

τ = n p ψ m i s q \tau = n_p\psi_m i_{sq} τ=npψmisq

联立定子 d d d轴电压方程与 d d d轴磁链约束,消去转子上的电流变量,可以得到

ψ m = u s d − R s i s d − L s σ i s d + ω α L s σ i s q p \psi_m = \frac{u_{sd} - R_s i_{sd} - L_{s\sigma} i_{sd} + \omega_\alpha L_{s\sigma} i_{sq}}{p} ψm=pusdRsisdLsσisd+ωαLsσisq

磁链方程过于复杂,难以对 d , q d,q d,q轴进行解耦,因此难以设计控制器。

异步电机矢量控制的实现

本节对转子磁链定向的异步电机进行矢量控制。

转子磁场定向的状态方程

在转子磁场定向下,设磁链观测器得到的转子磁链角度为 α ^ \hat \alpha α^,则有估算磁链角度满足

{ sin ⁡ α ^ = ψ ^ r β ψ ^ r cos ⁡ α ^ = ψ ^ r α ψ ^ r \left\{\begin{aligned} &\sin\hat\alpha = \frac{\hat \psi_{r\beta}}{\hat \psi_r} \\ &\cos\hat\alpha = \frac{\hat \psi_{r\alpha}}{\hat \psi_r} \\ \end{aligned}\right. sinα^=ψ^rψ^rβcosα^=ψ^rψ^rα

其中, ψ ^ r = ψ ^ r α 2 + ψ ^ r β 2 \hat \psi_r = \sqrt{\hat \psi_{r\alpha}^2+ \hat \psi_{r\beta}^2} ψ^r=ψ^rα2+ψ^rβ2 为转子磁链估算值。在估算角度下,Park变换得到的转子磁链值满足

{ ψ r d = ψ ^ r ψ r q = 0 \left\{\begin{aligned} &\psi_{rd} = \hat \psi_r \\ &\psi_{rq} = 0 \\ \end{aligned}\right. {ψrd=ψ^rψrq=0

此时的电压方程为

U = R I + ω L ′ I + ω α L ′ ′ I + L p I U = RI + \omega L' I + \omega_\alpha L'' I + L pI U=RI+ωLI+ωαLI+LpI

磁链存在代数约束

[ ψ r d ψ r q ] = [ ψ r 0 ] = [ L m L r L m L r ] I \left[\begin{matrix} \psi_{rd} \\ \psi_{rq} \end{matrix}\right] = \left[\begin{matrix} \psi_{r} \\ 0 \end{matrix}\right] = \left[\begin{matrix} L_{m} & & L_{r} & \\ & L_{m} & & L_{r} \\ \end{matrix}\right] I [ψrdψrq]=[ψr0]=[LmLmLrLr]I

对电压方程作变量替换,可以得到使用定子电流与转子磁链表示的电压方程。变量替换矩阵定义如下

X = Q I X = QI X=QI

[ i s d i s q ψ r d ψ r q ] = [ 1 1 L m L r L m L r ] [ i s d i s q i r d i r q ] \left[\begin{matrix} i_{sd} \\ i_{sq} \\ \psi_{rd} \\ \psi_{rq} \end{matrix}\right] = \left[\begin{matrix} 1 &&&\\ & 1 &&\\ L_{m} & & L_{r} & \\ & L_{m} & & L_{r} \\ \end{matrix}\right] \left[\begin{matrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{matrix}\right] isdisqψrdψrq=1Lm1LmLrLrisdisqirdirq

显然变量替换是可逆的,其逆变换矩阵为

Q − 1 = [ 1 1 − L m / L r 1 / L r − L m / L r 1 / L r ] Q^{-1} = \left[\begin{matrix} 1 &&&\\ & 1 &&\\ -L_{m}/L_{r} & & 1/L_{r} & \\ & -L_{m}/L_{r} & & 1/L_{r} \\ \end{matrix}\right] Q1=1Lm/Lr1Lm/Lr1/Lr1/Lr

在变换下的系统电压方程为

Q U = ( A ~ 1 + ω A ~ 2 + ω α A ~ 3 ) X + B ~ X ˙ QU = (\tilde A_1 + \omega \tilde A_2 + \omega_\alpha \tilde A_3) X + \tilde B \dot X QU=(A~1+ωA~2+ωαA~3)X+B~X˙

A ~ 1 = Q R Q − 1 = ( R s 0 0 0 0 R s 0 0 − L m   ( R r − R s ) 0 R r 0 0 − L m   ( R r − R s ) 0 R r ) \tilde A_1 = QRQ^{-1} = \left(\begin{array}{cccc} R_{s} & 0 & 0 & 0\\ 0 & R_{s} & 0 & 0\\ -L_{m}\,\left(R_{r}-R_{s}\right) & 0 & R_{r} & 0\\ 0 & -L_{m}\,\left(R_{r}-R_{s}\right) & 0 & R_{r} \end{array}\right) A~1=QRQ1=Rs0Lm(RrRs)00Rs0Lm(RrRs)00Rr0000Rr

A ~ 2 = Q L 1 Q − 1 = ( 0 0 0 0 0 0 0 0 0 0 0 L r 0 0 − L r 0 ) \tilde A_2 = QL_1Q^{-1} = \left(\begin{array}{cccc} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & L_{r}\\ 0 & 0 & -L_{r} & 0 \end{array}\right) A~2=QL1Q1=00000000000Lr00Lr0

A ~ 3 = Q L 2 Q − 1 = ( 0 − σ L s 0 − L m L r σ L s 0 L m L r 0 0 − σ L m L s 0 − L m 2 + L r 2 L r σ L m L s 0 L m 2 + L r 2 L r 0 ) \tilde A_3 = QL_2Q^{-1} = \left(\begin{array}{cccc} 0 & -\sigma L_s & 0 & -\frac{L_{m}}{L_{r}}\\ \sigma L_s & 0 & \frac{L_{m}}{L_{r}} & 0\\ 0 & -\sigma L_m L_s & 0 & -\frac{{L_{m}}^2+{L_{r}}^2}{L_{r}}\\ \sigma L_m L_s & 0 & \frac{{L_{m}}^2+{L_{r}}^2}{L_{r}} & 0 \end{array}\right) A~3=QL2Q1=0σLs0σLmLsσLs0σLmLs00LrLm0LrLm2+Lr2LrLm0LrLm2+Lr20

B ~ = Q L Q − 1 = ( σ L s 0 L m / L r 0 0 σ L s 0 L m / L r σ L s L m 0 L m 2 + L r 2 L r 0 0 σ L s L m 0 L m 2 + L r 2 L r ) \tilde B = QLQ^{-1} = \left(\begin{array}{cccc} \sigma L_s & 0 & L_m/L_r & 0\\ 0 & \sigma L_s & 0 & L_m/L_r\\ \sigma L_s L_m & 0 & \frac{{L_{m}}^2+{L_{r}}^2}{L_{r}} & 0\\ 0 & \sigma L_s L_m & 0 & \frac{{L_{m}}^2+{L_{r}}^2}{L_{r}} \end{array}\right) B~=QLQ1=σLs0σLsLm00σLs0σLsLmLm/Lr0LrLm2+Lr200Lm/Lr0LrLm2+Lr2

系统状态方程为

X ˙ = − B ~ − 1 ( A ~ 1 + ω A ~ 2 + ω α A ~ 3 ) X + B ~ − 1 Q U \dot X = -\tilde B^{-1}(\tilde A_1 + \omega \tilde A_2 + \omega_\alpha \tilde A_3) X + \tilde B^{-1} QU X˙=B~1(A~1+ωA~2+ωαA~3)X+B~1QU

− B ~ − 1 A ~ 1 = ( − R r   L m 2 + R s   L r 2 σ L s L r 2 0 L m   R r σ L s L r 2 0 0 − R r   L m 2 + R s   L r 2 σ L s L r 2 0 L m   R r σ L s L r 2 L m   R r L r 0 − R r L r 0 0 L m   R r L r 0 − R r L r ) -\tilde B^{-1}\tilde A_1 = \left(\begin{array}{cccc} -\frac{R_{r}\,{L_{m}}^2+R_{s}\,{L_{r}}^2}{\sigma L_s L_r^2} & 0 & \frac{L_{m}\,R_{r}}{\sigma L_s L_r^2} & 0\\ 0 & -\frac{R_{r}\,{L_{m}}^2+R_{s}\,{L_{r}}^2}{\sigma L_s L_r^2} & 0 & \frac{L_{m}\,R_{r}}{\sigma L_s L_r^2}\\ \frac{L_{m}\,R_{r}}{L_{r}} & 0 & -\frac{R_{r}}{L_{r}} & 0\\ 0 & \frac{L_{m}\,R_{r}}{L_{r}} & 0 & -\frac{R_{r}}{L_{r}} \end{array}\right) B~1A~1=σLsLr2RrLm2+RsLr20LrLmRr00σLsLr2RrLm2+RsLr20LrLmRrσLsLr2LmRr0LrRr00σLsLr2LmRr0LrRr

− B ~ − 1 A ~ 2 = ( 0 0 0 L m σ L s L r 0 0 − L m σ L s L r 0 0 0 0 − 1 0 0 1 0 ) -\tilde B^{-1}\tilde A_2 = \left(\begin{array}{cccc} 0 & 0 & 0 & \frac{L_{m}}{\sigma L_s L_r}\\ 0 & 0 & -\frac{L_{m}}{\sigma L_s L_r} & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & 1 & 0 \end{array}\right) B~1A~2=000000000σLsLrLm01σLsLrLm010

− B ~ − 1 A ~ 3 = ( 0 1 0 0 − 1 0 0 0 0 0 0 1 0 0 − 1 0 ) -\tilde B^{-1}\tilde A_3 = \left(\begin{array}{cccc} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0 \end{array}\right) B~1A~3=0100100000010010

B ~ − 1 Q = ( 1 / σ L s 0 − L m σ L s L r 0 0 1 / σ L s 0 − L m σ L s L r 0 0 1 0 0 0 0 1 ) \tilde B^{-1}Q = \left(\begin{array}{cccc} 1/\sigma L_s & 0 & -\frac{L_{m}}{\sigma L_s L_r} & 0\\ 0 & 1/\sigma L_s & 0 & -\frac{L_{m}}{\sigma L_s L_r}\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array}\right) B~1Q=1/σLs00001/σLs00σLsLrLm0100σLsLrLm01

使用前馈解耦的三闭环控制器设计

电流环的实现

转子磁链定向下的电压方程使用转子磁链与定子电流表示的形式如下

{ u s d = R s i s d − ω α ( σ L s i s q + L m L r ψ r q ) + σ L s i ˙ s d + L m L r ψ ˙ r d u s q = R s i s q + ω α ( σ L s i s d + L m L r ψ r d ) + σ L s i ˙ s q + L m L r ψ ˙ r q \left\{\begin{aligned} & u_{sd} = R_s i_{sd} - \omega_\alpha(\sigma L_s i_{sq} + \frac{L_m}{L_r}\psi_{rq}) + \sigma L_s \dot i_{sd} + \frac{L_m}{L_r} \dot \psi_{rd} \\ & u_{sq} = R_s i_{sq} + \omega_\alpha(\sigma L_s i_{sd} + \frac{L_m}{L_r}\psi_{rd}) + \sigma L_s \dot i_{sq} + \frac{L_m}{L_r} \dot \psi_{rq} \\\end{aligned}\right. usd=Rsisdωα(σLsisq+LrLmψrq)+σLsi˙sd+LrLmψ˙rdusq=Rsisq+ωα(σLsisd+LrLmψrd)+σLsi˙sq+LrLmψ˙rq

注意到电压方程中存在关于磁链的导数项,则需要根据状态方程消去关于磁链的导数项。完全使用转子磁链以及定子电流表示的定子电流状态方程如下。

{ i ˙ s d = − R r L m 2 + R s L r 2 σ L s L r 2 i s d + L m R r σ L s L r 2 ψ r d + ω L m σ L s L r ψ r q + ω α i s q + 1 σ L s u s d i ˙ s q = − R r L m 2 + R s L r 2 σ L s L r 2 i s q + L m R r σ L s L r 2 ψ r q − ω L m σ L s L r ψ r d − ω α i s d + 1 σ L s u s q \left\{\begin{aligned} & \dot i_{sd} = - \frac{R_r L_m^2 + R_s L_r^2}{\sigma L_s L_r^2} i_{sd} + \frac{L_m R_r}{\sigma L_s L_r^2} \psi_{rd} + \omega \frac{L_m}{\sigma L_s L_r}\psi_{rq} + \omega_\alpha i_{sq} + \frac{1}{\sigma L_s}u_{sd} \\ & \dot i_{sq} = - \frac{R_r L_m^2 + R_s L_r^2}{\sigma L_s L_r^2} i_{sq} + \frac{L_m R_r}{\sigma L_s L_r^2} \psi_{rq} - \omega \frac{L_m}{\sigma L_s L_r}\psi_{rd} - \omega_\alpha i_{sd} + \frac{1}{\sigma L_s} u_{sq} \\ \end{aligned}\right. i˙sd=σLsLr2RrLm2+RsLr2isd+σLsLr2LmRrψrd+ωσLsLrLmψrq+ωαisq+σLs1usdi˙sq=σLsLr2RrLm2+RsLr2isq+σLsLr2LmRrψrqωσLsLrLmψrdωαisd+σLs1usq

τ σ = σ L s L r 2 R r L m 2 + R s L r 2 \tau_\sigma = \frac{\sigma L_s L_r^2}{R_r L_m^2 + R_s L_r^2} τσ=RrLm2+RsLr2σLsLr2

结合转子磁链定向中的磁链约束

ψ r d = ψ r , ψ r q = 0 \psi_{rd} = \psi_{r}, \psi_{rq} = 0 ψrd=ψr,ψrq=0

定子电流的拉氏变换状态方程如下

{ σ L s ( s + 1 τ σ ) i s d = L m R r L r 2 ψ r d + ω α σ L s i s q + u s d σ L s ( s + 1 τ σ ) i s q = − ω L m L r ψ r d − ω α σ L s i s d + u s q \left\{\begin{aligned} & \sigma L_s(s + \frac{1}{\tau_\sigma}) i_{sd} = \frac{L_m R_r}{L_r^2} \psi_{rd} + \omega_\alpha \sigma L_s i_{sq} + u_{sd} \\ & \sigma L_s(s + \frac{1}{\tau_\sigma}) i_{sq} = - \omega \frac{L_m}{L_r}\psi_{rd} - \omega_\alpha \sigma L_s i_{sd} + u_{sq} \\ \end{aligned}\right. σLs(s+τσ1)isd=Lr2LmRrψrd+ωασLsisq+usdσLs(s+τσ1)isq=ωLrLmψrdωασLsisd+usq

使用前馈解耦方法实现 d , q d, q d,q轴的解耦,解耦后的传递函数

{ u ~ s d = σ L s ( s + 1 τ σ ) i s d u ~ s q = σ L s ( s + 1 τ σ ) i s q \left\{\begin{aligned} &\tilde u_{sd} = \sigma L_s (s + \frac{1}{\tau_\sigma}) i_{sd} \\ &\tilde u_{sq} = \sigma L_s (s + \frac{1}{\tau_\sigma}) i_{sq} \\ \end{aligned}\right. u~sd=σLs(s+τσ1)isdu~sq=σLs(s+τσ1)isq

其中,使用前馈解耦等效电压表示的实际 d q dq dq轴定子电压如下

{ u s d = u ~ s d − L m R r L r 2 ψ r d − ω α σ L s i s q u s q = u ~ s q + ω L m L r ψ r d + ω α σ L s i s d \left\{\begin{aligned} &u_{sd} = \tilde u_{sd} - \frac{L_m R_r}{L_r^2} \psi_{rd} - \omega_\alpha \sigma L_s i_{sq}\\ &u_{sq} = \tilde u_{sq} + \omega \frac{L_m}{L_r} \psi_{rd} + \omega_\alpha \sigma L_s i_{sd} \end{aligned}\right. usd=u~sdLr2LmRrψrdωασLsisqusq=u~sq+ωLrLmψrd+ωασLsisd

在前馈解耦下定子电流分别只与对应的等效电压有关,且均为典型一阶过程,因此可以使用PI控制器作为电流环。PI控制器的定义以及参数计算如下所示。

R d ( s ) = u s d ∗ i s d − i s d ∗ = K i i + K p i s s R q ( s ) = u s d ∗ i s d − i s d ∗ = K i i + K p i s s \begin{aligned} R_d(s) &= \frac{u_{sd}^*}{i_{sd} - i_{sd}^*} = \frac{K_{ii} + K_{pi} s}{s} \\ R_q(s) &= \frac{u_{sd}^*}{i_{sd} - i_{sd}^*} = \frac{K_{ii} + K_{pi} s}{s} \end{aligned} Rd(s)Rq(s)=isdisdusd=sKii+Kpis=isdisdusd=sKii+Kpis

{ K i i = σ L s 16 ( ln ⁡ 2 σ i + π 2 ) ln ⁡ 2 σ i ⋅ t s i 2 K p i = σ L s ( 8 t s i − 1 τ σ ) \left\{\begin{aligned} K_{ii} &= \sigma L_s \frac{16 (\ln^2 \sigma_i + \pi^2)}{\ln^2\sigma_i \cdot t_{si}^2} \\ K_{pi} &= \sigma L_s (\frac{8}{t_{si}} - \frac{1}{\tau_\sigma}) \end{aligned}\right. KiiKpi=σLsln2σitsi216(ln2σi+π2)=σLs(tsi8τσ1)

q q q轴电流控制器完全一致。

磁链环的实现

考虑电机的磁链方程如下

ψ r = L m τ r ( s + 1 τ r ) i s d \psi_r = \frac{L_m}{\tau_r(s + \frac1{\tau_r})} i_{sd} ψr=τr(s+τr1)Lmisd

此时磁链只与 d d d轴电流有关,且为典型一阶系统,因此可以使用PI控制器作为磁链环。PI控制器的定义以及参数计算如下所示。

R ψ ( s ) = i s d ∗ ψ r − ψ r ∗ = K i ψ + K p ψ s s \begin{aligned} R_{\psi}(s) &= \frac{i_{sd}^*}{\psi_r - \psi_r^*} = \frac{K_{i\psi} + K_{p\psi} s}{s} \end{aligned} Rψ(s)=ψrψrisd=sKiψ+Kpψs

{ K i ψ = τ r L m 16 ( ln ⁡ 2 σ ψ + π 2 ) ln ⁡ 2 σ ψ ⋅ t s ψ 2 K p ψ = τ r L m ( 8 t s ψ − 1 τ r ) \left\{\begin{aligned} K_{i\psi} &= \frac{\tau_r}{L_m} \frac{16 (\ln^2 \sigma_\psi + \pi^2)}{\ln^2\sigma_\psi \cdot t_{s\psi}^2} \\ K_{p\psi} &= \frac{\tau_r}{L_m} (\frac{8}{t_{s\psi}} - \frac1{\tau_r}) \end{aligned}\right. KiψKpψ=Lmτrln2σψtsψ216(ln2σψ+π2)=Lmτr(tsψ8τr1)

转速环的实现

考虑电机的转矩方程如下

T = n p L m L r ψ r i s q T = n_p \frac{L_m}{L_r} \psi_r i_{sq} T=npLrLmψrisq

由于机械子系统的时间常数远大于磁链子系统的时间常数,如果磁链与转矩分别独立进行控制,则可以认为控制转矩时,转子磁链保持不变。转矩此时只与 q q q轴电流有关,正比于 q q q轴电流。

再考虑电机的机械方程如下

J ( s + B J ) ω m = T − T L J(s + \frac{B}{J})\omega_m= T - T_L J(s+JB)ωm=TTL

其中, ω m \omega_m ωm为机械转速, T L T_L TL为负载转矩, B B B为机械阻尼系数。转速与 q q q轴电流组成为典型一阶系统,因此可以使用PI控制器作为转速环。PI控制器的定义以及参数计算如下所示。

R ω ( s ) = i s q ∗ ω − ω ∗ = K i ω + K p ω s s \begin{aligned} R_{\omega}(s) &= \frac{i_{sq}^*}{\omega - \omega^*} = \frac{K_{i\omega} + K_{p\omega} s}{s} \end{aligned} Rω(s)=ωωisq=sKiω+Kpωs

{ K i ω = J L r n p L m ψ r 16 ( ln ⁡ 2 σ ω + π 2 ) ln ⁡ 2 σ ω ⋅ t s ω 2 K p ω = J L r n p L m ψ r ( 8 t s ω − J B ) \left\{\begin{aligned} K_{i\omega} &= \frac{J L_r}{n_p L_m \psi_r} \frac{16 (\ln^2 \sigma_\omega + \pi^2)}{\ln^2\sigma_\omega \cdot t_{s\omega}^2} \\ K_{p\omega} &= \frac{J L_r}{n_p L_m \psi_r} (\frac{8}{t_{s\omega}} - \frac{J}{B}) \end{aligned}\right. KiωKpω=npLmψrJLrln2σωtsω216(ln2σω+π2)=npLmψrJLr(tsω8BJ)

基于MTPA与MTPV的双闭环控制器设计

三闭环控制中,磁链与转矩分别通过两个独立的控制器实现,而给定的控制信号实际上只有参考转速,因此磁链值缺少约束。传统的三闭环控制系统使用弱磁算法决定磁链值,即在低转速时为恒定磁链控制,在高转速时为恒定反电势控制,磁链值由转速参考信号确定。

要获得更高的异步电机运行效率,可以将异步电机定子电流最小作为优化目标,并考虑异步电机运行时的电压约束,从而求解不同电磁转矩下最优工作状态。在电压约束不生效时对应的即为最大转矩电流比控制算法(MTPA),在电压约束生效时对应的即为最大转矩电压比控制算法(MTPV)。

考虑稳态情况下的 d q dq dq坐标系电压方程,此时电流导数为零,且 q q q轴磁链为零。

{ 1 σ L s u s d = R r L m 2 + R s L r 2 σ L s L r 2 i s d − L m R r σ L s L r 2 ψ r d − ω α i s q 1 σ L s u s q = R r L m 2 + R s L r 2 σ L s L r 2 i s q + ω L m σ L s L r ψ r d + ω α i s d \left\{\begin{aligned} & \frac{1}{\sigma L_s}u_{sd} = \frac{R_r L_m^2 + R_s L_r^2}{\sigma L_s L_r^2} i_{sd} - \frac{L_m R_r}{\sigma L_s L_r^2} \psi_{rd} - \omega_\alpha i_{sq} \\ & \frac{1}{\sigma L_s} u_{sq} = \frac{R_r L_m^2 + R_s L_r^2}{\sigma L_s L_r^2} i_{sq} + \omega \frac{L_m}{\sigma L_s L_r}\psi_{rd} + \omega_\alpha i_{sd} \\ \end{aligned}\right. σLs1usd=σLsLr2RrLm2+RsLr2isdσLsLr2LmRrψrdωαisqσLs1usq=σLsLr2RrLm2+RsLr2isq+ωσLsLrLmψrd+ωαisd

根据稳态时的磁链方程,有

ψ r = L m i s d \psi_r = L_m i_{sd} ψr=Lmisd

根据正交静止坐标系中的状态方程可以计算 ω α \omega_\alpha ωα如下

ω α = 1 cos ⁡ α d sin ⁡ α d t = 1 cos ⁡ α d d t ψ r β ψ r = 1 cos ⁡ α ( 1 ψ r d ψ r β d t − sin ⁡ α 1 ψ r d ψ r d t ) \begin{aligned} \omega_\alpha &= \frac{1}{\cos \alpha} \frac{d \sin \alpha}{dt}\\ &=\frac{1}{\cos \alpha} \frac{d}{dt} \frac{\psi_{r\beta}}{\psi_r}\\ &=\frac{1}{\cos \alpha} (\frac{1}{\psi_r}\frac{d\psi_{r\beta}}{dt} - \sin \alpha \frac{1}{\psi_r}\frac{d\psi_{r}}{dt} ) \\ \end{aligned} ωα=cosα1dtdsinα=cosα1dtdψrψrβ=cosα1(ψr1dtdψrβsinαψr1dtdψr)

由正交静止坐标系中的状态方程有

d ψ r β d t = L m τ r i s β + ω ψ r α − 1 τ r ψ r β = ( ω + L m τ r i s q ψ r ) ψ r cos ⁡ α \begin{aligned} \frac{d\psi_{r\beta}}{dt} &= \frac{L_m}{\tau_r} i_{s\beta} + \omega \psi_{r\alpha} - \frac{1}{\tau_r} \psi_{r\beta} \\ &= (\omega + \frac{L_m}{\tau_r} \frac{i_{sq}}{\psi_r})\psi_{r} \cos \alpha \end{aligned} dtdψrβ=τrLmisβ+ωψrατr1ψrβ=(ω+τrLmψrisq)ψrcosα

从而有

ω α = ω + L m τ r i s q ψ r \omega_\alpha = \omega + \frac{L_m}{\tau_r} \frac{i_{sq}}{\psi_r} ωα=ω+τrLmψrisq

ω α \omega_\alpha ωα使用定子电流表示,代入到电压方程中有

{ 1 σ L s u s d = 1 σ τ s i s d − ( ω + 1 τ r i s q i s d ) i s q 1 σ L s u s q = ( 1 τ σ + 1 τ r ) i s q + ω 1 σ i s d \left\{\begin{aligned} & \frac{1}{\sigma L_s}u_{sd} = \frac{1}{\sigma \tau_s} i_{sd} - (\omega + \frac{1}{\tau_r} \frac{i_{sq}}{i_{sd}}) i_{sq} \\ & \frac{1}{\sigma L_s} u_{sq} = (\frac{1}{\tau_\sigma} + \frac{1}{\tau_r}) i_{sq} + \omega \frac{1}{\sigma} i_{sd}\\ \end{aligned}\right. σLs1usd=στs1isd(ω+τr1isdisq)isqσLs1usq=(τσ1+τr1)isq+ωσ1isd

根据定子电压不能超过电压限幅,得到电压约束

[ 1 σ τ s i s d − ( ω + 1 τ r i s q i s d ) i s q ] 2 + [ ( 1 τ σ + 1 τ r ) i s q + ω 1 σ i s d ] 2 ≤ ( u m σ L s ) 2 [\frac{1}{\sigma \tau_s} i_{sd} - (\omega + \frac{1}{\tau_r} \frac{i_{sq}}{i_{sd}}) i_{sq}]^2 + [(\frac{1}{\tau_\sigma} + \frac{1}{\tau_r}) i_{sq} + \omega \frac{1}{\sigma} i_{sd}]^2 \le (\frac{u_{m}}{\sigma L_s})^2 [στs1isd(ω+τr1isdisq)isq]2+[(τσ1+τr1)isq+ωσ1isd]2(σLsum)2

在恰好达到电压限幅的情况下,整理成关于 ω \omega ω的二次方程的形式,有

[ ( i s d σ ) 2 + i s q 2 ] ω 2 + [ 2 i s d σ i s q ( 1 τ r + 1 τ σ ) − 2 i s q ( i s d σ τ s − 1 τ r i s d i s q 2 ) ] ω + i s q 2 ( 1 τ r + 1 τ σ ) 2 + ( i s d σ τ s − 1 τ r i s d i s q 2 ) 2 = ( u m σ L s ) 2 \begin{aligned} &[(\frac{i_{sd}}{\sigma})^2 + i_{sq}^2] \omega^2 + [2\frac{i_{sd}}{\sigma}i_{sq} (\frac1{\tau_r} + \frac1{\tau_\sigma}) - 2i_{sq}(\frac{i_{sd}}{\sigma\tau_s} - \frac{1}{\tau_r i_{sd}} i_{sq}^2)]\omega \\ &+ i_{sq}^2 (\frac1{\tau_r} + \frac1{\tau_\sigma})^2 + (\frac{i_{sd}}{\sigma\tau_s} - \frac{1}{\tau_r i_{sd}} i_{sq}^2)^2 = (\frac{u_{m}}{\sigma L_s})^2 \end{aligned} [(σisd)2+isq2]ω2+[2σisdisq(τr1+τσ1)2isq(στsisdτrisd1isq2)]ω+isq2(τr1+τσ1)2+(στsisdτrisd1isq2)2=(σLsum)2

对不同的电流值求解该方程,可以得到在该电流 ( i s d , i s q ) (i_{sd}, i_{sq}) (isd,isq)下满足电压约束的最大转速,从而可以得到不同转速下的电压极限曲线。典型的电压极限如下图所示。
典型电流极限曲线图

在不同的转速下以电流幅值作为目标函数进行优化,其中有转矩等式约束与电压不等式约束。容易知道,在没有达到电压极限曲线时,最优的电流满足 i d = i q i_d = i_q id=iq。在达到电压极限曲线时,最优电流在电压极限曲线上移动。

将优化结果使用二维表格的形式储存,将 i d , i q i_d, i_q id,iq作为 ω , T e m \omega, T_{em} ω,Tem的函数进行表示,从而实现了MTPA与MTPV控制。

实际实现时,非线性形式的电压约束方程不容易进行求解。注意到典型的电压极限曲线关于原点对称,并在 i d > 0 i_d > 0 id>0的区域中近似为直线,因此可以使用直线近似电压极限曲线。近似方程如下

i s q = − ω σ 1 1 τ σ + 1 τ r ( i s d ± u m L s 1 ( 1 τ s ) 2 + ω 2 ) = k ( i s d ∓ i s d 0 ) i_{sq} = -\frac{\omega}{\sigma} \frac1{\frac1{\tau_\sigma} + \frac1{\tau_r}}(i_{sd} \pm \frac{u_m}{L_s}\frac1{\sqrt{(\frac1{\tau_s})^2 + \omega^2}}) = k(i_{sd} \mp i_{sd0}) isq=σωτσ1+τr11(isd±Lsum(τs1)2+ω2 1)=k(isdisd0)

i d > 0 i_d > 0 id>0的区域中典型的近似结果如下图所示。在实际系统中可以解析计算得到期望电流。

电流极限曲线的直线近似

记MTPA算法与MTPV算法的切换转矩为

T s w i t c h + = n p L m L r 2 ( k k − 1 ) 2 i s d 0 2 T_{switch+} = n_p \frac{L_m}{L_r^2}(\frac{k}{k-1})^2 i_{sd0}^2 Tswitch+=npLr2Lm(k1k)2isd02

T s w i t c h − = n p L m L r 2 ( k k + 1 ) 2 i s d 0 2 T_{switch-} = n_p \frac{L_m}{L_r^2}(\frac{k}{k+1})^2 i_{sd0}^2 Tswitch=npLr2Lm(k+1k)2isd02

ω > 0 \omega > 0 ω>0时,MTPA与MTPV控制下的电流参考值为

i s d = { 1 2 ( i s d 0 + i s d 0 2 + 4 T L r k n p L m 2 ) T ≤ − T s w i t c h − − T L r n p L m 2 − T s w i t c h − < T ≤ 0 T L r n p L m 2 0 < T < T s w i t c h + 1 2 ( i s d 0 + i s d 0 2 + 4 T L r k n p L m 2 ) T s w i t c h + ≤ T i_{sd} = \begin{cases} \frac12 (i_{sd0} + \sqrt{i_{sd0}^2 + \frac{4TL_r}{kn_pL_m^2}}) & T \le -T_{switch-} \\ \sqrt{-\frac{TL_r}{n_p L_m^2}} & -T_{switch-} < T \le 0\\ \sqrt{\frac{TL_r}{n_p L_m^2}} & 0 < T < T_{switch+}\\ \frac12 (i_{sd0}+ \sqrt{i_{sd0}^2 + \frac{4TL_r}{kn_pL_m^2}}) & T_{switch+} \le T \end{cases} isd=21(isd0+isd02+knpLm24TLr )npLm2TLr npLm2TLr 21(isd0+isd02+knpLm24TLr )TTswitchTswitch<T00<T<Tswitch+Tswitch+T

i s q = { k ( i s d − i s d 0 ) T ≤ − T s w i t c h − − i s d − T s w i t c h − < T ≤ 0 i s d 0 < T < T s w i t c h + k ( i s d − i s d 0 ) T s w i t c h + ≤ T i_{sq} = \begin{cases} k(i_{sd} - i_{sd0}) & T \le -T_{switch-} \\ -i_{sd} & -T_{switch-} < T \le 0\\ i_{sd} & 0 < T < T_{switch+}\\ k(i_{sd} - i_{sd0}) & T_{switch+} \le T \end{cases} isq=k(isdisd0)isdisdk(isdisd0)TTswitchTswitch<T00<T<Tswitch+Tswitch+T

ω < 0 \omega<0 ω<0时,可以根据 ω > 0 \omega > 0 ω>0的情况推出指令电流如下

i s d ( ω , T ) = i s d ( − ω , − T ) when    ω < 0 i_{sd}(\omega, T) = i_{sd}(-\omega, -T) \quad \text{when}\; \omega < 0 isd(ω,T)=isd(ω,T)whenω<0

i s q ( ω , T ) = − i s q ( − ω , − T ) when    ω < 0 i_{sq}(\omega, T) = -i_{sq}(-\omega, -T) \quad \text{when}\; \omega < 0 isq(ω,T)=isq(ω,T)whenω<0

ω > 0 \omega > 0 ω>0时,参考电流随着输出转矩的变化曲线如下图所示。

MTPV与MTPA指令电流曲线

值得注意的是,使用MTPA与MTPV控制时,由于磁链与转矩均为开环控制,因此对于磁链角度估计的精度要求很高,必须要时间响应与稳态误差上都要足够好的性能。如果在磁链角度的估计上不准确,将会导致转矩值与设定值之间存在差异,导致转速环可能不能稳定。

转速环设计

在实现MTPA与MTPV控制时,电流参考值被转矩与转速值确定,其中转速值通过速度传感器测量得到,而转矩值由转速环给出。

考虑电机的机械方程如下

J ( s + B J ) ω m = T − T L J(s + \frac{B}{J})\omega_m= T - T_L J(s+JB)ωm=TTL

其中, ω m \omega_m ωm为机械转速, T L T_L TL为负载转矩, B B B为机械阻尼系数。转速与转矩组成典型一阶系统,因此可以使用PI控制器作为转速环。PI控制器的定义以及参数计算如下所示。

R ω ( s ) = T ∗ ω − ω ∗ = K i ω + K p ω s s \begin{aligned} R_{\omega}(s) &= \frac{T^*}{\omega - \omega^*} = \frac{K_{i\omega} + K_{p\omega} s}{s} \end{aligned} Rω(s)=ωωT=sKiω+Kpωs

{ K i ω = J n p 16 ( ln ⁡ 2 σ ω + π 2 ) ln ⁡ 2 σ ω ⋅ t s ω 2 K p ω = J n p ( 8 t s ω − J B ) \left\{\begin{aligned} K_{i\omega} &= \frac{J}{n_p} \frac{16 (\ln^2 \sigma_\omega + \pi^2)}{\ln^2\sigma_\omega \cdot t_{s\omega}^2} \\ K_{p\omega} &= \frac{J}{n_p} (\frac{8}{t_{s\omega}} - \frac{J}{B}) \end{aligned}\right. KiωKpω=npJln2σωtsω216(ln2σω+π2)=npJ(tsω8BJ)

有速度传感器的磁链估计器

电压模型磁链开环估计器

考虑在静止坐标系下的定子电压方程

{ u s α = r s i s α + L s d i s α d t + L m d i r α d t u s β = r s i s β + L s d i s β d t + L m d i r β d t \left\{\begin{aligned} u_{s\alpha} &= r_s i_{s\alpha} + L_s \frac{di_{s\alpha}}{dt} + L_m \frac{di_{r\alpha}}{dt} \\ u_{s\beta} &= r_s i_{s\beta} + L_s \frac{di_{s\beta}}{dt} + L_m \frac{di_{r\beta}}{dt} \\ \end{aligned}\right. usαusβ=rsisα+Lsdtdisα+Lmdtdirα=rsisβ+Lsdtdisβ+Lmdtdirβ

再考虑静止坐标系下的转子磁链方程

{ ψ r α = L m i s α + L r i r α ψ r β = L m i s β + L r i r β \left\{\begin{aligned} \psi_{r\alpha} &= L_m i_{s\alpha} + L_r i_{r\alpha} \\ \psi_{r\beta} &= L_m i_{s\beta} + L_r i_{r\beta} \\ \end{aligned}\right. {ψrαψrβ=Lmisα+Lrirα=Lmisβ+Lrirβ

联立消去转子电流,可以得到磁链估计器方程如下

{ d ψ ^ r α d t = L r L m ( u s α − r s i s α − σ L s d i s α d t ) d ψ ^ r β d t = L r L m ( u s β − r s i s β − σ L s d i s β d t ) \left\{\begin{aligned} \frac{d\hat\psi_{r\alpha}}{dt} &= \frac{L_r}{L_m} (u_{s\alpha} - r_s i_{s\alpha} - \sigma L_s \frac{di_{s\alpha}}{dt}) \\ \frac{d\hat\psi_{r\beta}}{dt} &= \frac{L_r}{L_m} (u_{s\beta} - r_s i_{s\beta} - \sigma L_s \frac{di_{s\beta}}{dt}) \\ \end{aligned}\right. dtdψ^rαdtdψ^rβ=LmLr(usαrsisασLsdtdisα)=LmLr(usβrsisβσLsdtdisβ)

其中, σ = 1 − L m 2 / ( L s L r ) \sigma = 1 - L_m^2/(L_s L_r) σ=1Lm2/(LsLr)为漏感系数。

电流模型磁链开环估计器

考虑静止坐标系下的转子电压方程

{ 0 = r r i r α + d ψ r α d t + ω ψ r β 0 = r r i r β + d ψ r β d t − ω ψ r α \left\{\begin{aligned} 0 &= r_r i_{r\alpha} + \frac{d\psi_{r\alpha}}{dt} + \omega \psi_{r\beta} \\ 0 &= r_r i_{r\beta} + \frac{d\psi_{r\beta}}{dt} - \omega \psi_{r\alpha} \\ \end{aligned}\right. 00=rrirα+dtdψrα+ωψrβ=rrirβ+dtdψrβωψrα

再考虑静止坐标系下的转子磁链方程

{ ψ r α = L m i s α + L r i r α ψ r β = L m i s β + L r i r β \left\{\begin{aligned} \psi_{r\alpha} &= L_m i_{s\alpha} + L_r i_{r\alpha} \\ \psi_{r\beta} &= L_m i_{s\beta} + L_r i_{r\beta} \\ \end{aligned}\right. {ψrαψrβ=Lmisα+Lrirα=Lmisβ+Lrirβ

联立消去转子电流,可以得到磁链估计器方程如下

{ d ψ ^ r α d t = − 1 τ r ψ ^ r α − ω ψ ^ r β + L m τ r i s α d ψ ^ r β d t = − 1 τ r ψ ^ r β + ω ψ ^ r α + L m τ r i s β \left\{\begin{aligned} \frac{d\hat\psi_{r\alpha}}{dt} &= -\frac1{\tau_r} \hat\psi_{r\alpha} - \omega \hat \psi_{r\beta} + \frac{L_m}{\tau_r} i_{s\alpha} \\ \frac{d\hat\psi_{r\beta}}{dt} &= -\frac1{\tau_r} \hat\psi_{r\beta} + \omega \hat \psi_{r\alpha} + \frac{L_m}{\tau_r} i_{s\beta} \\ \end{aligned}\right. dtdψ^rαdtdψ^rβ=τr1ψ^rαωψ^rβ+τrLmisα=τr1ψ^rβ+ωψ^rα+τrLmisβ

有速度传感器的全阶Luenberger状态观测器

令使用定子电流与转子磁链的状态方程中的旋转坐标系转速 ω α = 0 \omega_\alpha=0 ωα=0,得到在正交静止坐标系中的电机系统动态模型为

d d t [ i s α i s β ψ r α ψ r β ] = [ − 1 / τ σ 0 1 / L σ τ r ω r / L σ 0 − 1 / τ σ − ω r / L σ 1 / L σ τ r L m / τ r 0 − 1 / τ r − ω r 0 L m / τ r ω r − 1 / τ r ] [ i s α i s β ψ r α ψ r β ] + [ 1 / σ L s 0 0 1 / σ L s 0 0 0 0 ] [ u s α u s β ] \begin{aligned} \frac{d}{dt}\left[\begin{matrix} i_{s\alpha} \\ i_{s\beta} \\ \psi_{r\alpha} \\ \psi_{r\beta} \end{matrix}\right] =& \left[\begin{array}{cccc} -1/{\tau_\sigma} & 0 & 1/{L_\sigma \tau_r} & \omega_r/{L_\sigma} \\ 0 & -1/{\tau_\sigma} & -{\omega_r}/{L_\sigma} & 1/{L_\sigma \tau_r} \\ {L_m}/{\tau_r} & 0 & -1/{\tau_r} & - \omega_r \\ 0 & {L_m}/{\tau_r} & \omega_r & -1/{\tau_r} \end{array}\right] \left[\begin{matrix} i_{s\alpha} \\ i_{s\beta} \\ \psi_{r\alpha} \\ \psi_{r\beta} \end{matrix}\right] \\ &+\left[\begin{matrix} 1/{\sigma L_s} & 0\\ 0 & 1/{\sigma L_s} \\ 0 & 0 \\ 0 & 0 \\ \end{matrix}\right] \left[\begin{matrix}u_{s\alpha} \\ u_{s\beta}\end{matrix}\right] \end{aligned} dtdisαisβψrαψrβ=1/τσ0Lm/τr001/τσ0Lm/τr1/Lστrωr/Lσ1/τrωrωr/Lσ1/Lστrωr1/τrisαisβψrαψrβ+1/σLs00001/σLs00[usαusβ]

其中,

τ σ = σ L s L r 2 R r L m 2 + R s L r 2 \tau_\sigma = \frac{\sigma L_s L_r^2}{R_rL_m^2 + R_s L_r^2} τσ=RrLm2+RsLr2σLsLr2

L σ = σ L s L r L m L_\sigma = \frac{\sigma L_s L_r}{L_m} Lσ=LmσLsLr

构造全阶Luenberger观测器如下

d X ^ d t = A ˉ X ^ + B ˉ U ~ s + G ^ C ( X ^ − X ~ ) \frac{d\hat X}{dt} = \bar A \hat X + \bar B \tilde U_s + \hat GC(\hat X - \tilde X) dtdX^=AˉX^+BˉU~s+G^C(X^X~)

其中,带有上标 A ˉ \bar A Aˉ的为观测器使用的电机参数,带有上标 X ^ \hat X X^为观测器状态变量,带有上标 U ~ \tilde U U~的为系统测量参数。 C C C为系统输出矩阵,定义如下。

C = [ 1 0 0 0 0 1 0 0 ] C = \left[\begin{matrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ \end{matrix}\right] C=[10010000]

G ^ ∈ R 4 × 2 \hat G\in \mathbb R^{4\times2} G^R4×2为观测器反馈矩阵,定义如下。

G ^ = [ g ^ 1 − g ^ 2 g ^ 2 g ^ 1 g ^ 3 − g ^ 4 g ^ 4 g ^ 3 ] \hat G = \left[\begin{matrix} \hat g_1 & -\hat g_2 \\ \hat g_2 & \hat g_1 \\ \hat g_3 & -\hat g_4 \\ \hat g_4 & \hat g_3 \\ \end{matrix}\right] G^=g^1g^2g^3g^4g^2g^1g^4g^3

在假设观测器中的参数精确,电压、电流以及转速测量量均为精确值的情况下,可以得到观测器误差 E E E满足的状态方程为

E ˙ = ( A ˉ + G ^ C ) E \dot E = (\bar A + \hat GC)E E˙=(Aˉ+G^C)E

观测器稳定的条件为 ( A ˉ + G ^ C ) (\bar A + \hat GC) (Aˉ+G^C)的特征值均位于复平面的左半平面。由于 A A A矩阵中含有时变量 ω r \omega_r ωr,因此观测器反馈矩阵 G ^ \hat G G^应为转速 ω r \omega_r ωr的函数。部分文献中称此时的状态观测器为自适应状态观测器。

异步电机直接转矩控制的实现

电机的直接转矩控制假设一个周期内的定子磁链的变化量只与定子电压有关,而转子磁链不受到定子电压影响,因此在一个周期内可以认为基本不变。在稳态运行时,可以改变定子电压来控制定子磁链的变化量,从而直接控制转矩的增大或者减小,进一步将转矩控制为特定值。

直接转矩控制的电机状态方程

在直接转矩控制中,电机使用正交静止坐标系中的定转子磁链作为状态变量,推导其状态方程如下。先考虑正交静止坐标系中的电机电压方程与磁链方程如下。

U = R I + ω L ′ I + L p I U = RI + \omega L' I + L pI U=RI+ωLI+LpI

Ψ = L I \Psi = LI Ψ=LI

其中, U = [ u s α , u s β , u r α , u r β ] T , I = [ i s α , i s β , i r α , i r β ] T , Ψ = [ ψ s α , ψ s β , ψ r α , ψ r β ] T U=[u_{s\alpha}, u_{s\beta}, u_{r\alpha}, u_{r\beta}]^T, I=[i_{s\alpha}, i_{s\beta}, i_{r\alpha}, i_{r\beta}]^T, \Psi=[\psi_{s\alpha}, \psi_{s\beta}, \psi_{r\alpha}, \psi_{r\beta}]^T U=[usα,usβ,urα,urβ]T,I=[isα,isβ,irα,irβ]T,Ψ=[ψsα,ψsβ,ψrα,ψrβ]T

L = [ L s 0 L m 0 0 L s 0 L m L m 0 L r 0 0 L m 0 L r ] L = \left [\begin{matrix} L_s & 0 & L_m & 0 \\ 0 & L_s & 0 & L_m \\ L_m & 0 & L_r & 0 \\ 0 & L_m & 0 & L_r \\ \end{matrix} \right ] L=Ls0Lm00Ls0LmLm0Lr00Lm0Lr

L ′ = [ 0 0 0 0 0 0 0 0 0 L m 0 L r − L m 0 − L r 0 ] L' = \left [\begin{matrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & L_m & 0 & L_r\\ -L_m & 0 & -L_r & 0\\ \end{matrix} \right ] L=000Lm00Lm0000Lr00Lr0

令状态变量 X = Ψ = L I X = \Psi = LI X=Ψ=LI,则状态方程为

X ˙ = − ( A 1 + ω A 2 ) X + U \dot X = -(A_1 + \omega A_2) X + U X˙=(A1+ωA2)X+U

− A 1 = − R L − 1 = [ − 1 σ τ s R s L σ − 1 σ τ s R s L σ R r L σ − 1 σ τ r R r L σ − 1 σ τ r ] -A_1 = -RL^{-1} = \left[\begin{array}{cccc} -\dfrac{1}{\sigma \tau_s} & & \dfrac{R_{s}}{L_{\sigma}} & \\ & -\dfrac{1}{\sigma \tau_s} & & \dfrac{R_{s}}{L_{\sigma}}\\ \dfrac{R_{r}}{L_{\sigma}} & & -\dfrac{1}{\sigma \tau_r} & \\ & \dfrac{R_{r}}{L_{\sigma}} & & -\dfrac{1}{\sigma \tau_r} \end{array}\right] A1=RL1=στs1LσRrστs1LσRrLσRsστr1LσRsστr1

− A 2 = − L ′ L − 1 = [ 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 1 0 ] -A_2 = -L'L^{-1} = \left[\begin{array}{cccc} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & 1 & 0 \end{array}\right] A2=LL1=0000000000010010

转矩方程为

T = n p ( i s β ψ s α − i s α ψ s β ) = n p 1 L σ ( ψ s β ψ r α − ψ s α ψ r β ) \begin{aligned} T &= n_p (i_{s\beta}\psi_{s\alpha} - i_{s\alpha} \psi_{s\beta}) \\ &= n_p \frac{1}{L_\sigma} (\psi_{s\beta} \psi_{r\alpha} - \psi_{s\alpha} \psi_{r\beta}) \end{aligned} T=np(isβψsαisαψsβ)=npLσ1(ψsβψrαψsαψrβ)

注意到转子磁链的导数中不含有定子电压,而只含有定转子磁链,因此在一个周期内可以认为定子电压的选取不会导致转子磁链(与原本的轨迹对比)发生变化。

考虑转矩的导数

d d t T = − 1 L σ ( L r L m R s + L s L m R r ) T + n p 1 L σ ( u s β ψ r α − u s α ψ r β ) − n p 1 L σ ω ( ψ s α ψ r α + ψ r α ψ r β ) \begin{aligned} \frac{d}{dt} T =& -\frac{1}{L_\sigma} (\frac{L_r}{L_m}R_s + \frac{L_s}{L_m}R_r) T \\ &+ n_p \frac1{L_{\sigma}}(u_{s\beta} \psi_{r\alpha} - u_{s\alpha} \psi_{r\beta}) \\ &- n_p \frac1{L_{\sigma}} \omega (\psi_{s\alpha} \psi_{r\alpha} + \psi_{r\alpha} \psi_{r\beta}) \end{aligned} dtdT=Lσ1(LmLrRs+LmLsRr)T+npLσ1(usβψrαusαψrβ)npLσ1ω(ψsαψrα+ψrαψrβ)

转矩的导数表明,转矩的变化由三部分组成。

第一部分只与转矩本身有关,表明转矩会自由衰减。

第二部分表明转矩的变化与定子电压的关系,定子电压导致的转矩变化与定子电压相量和转子磁链相量的矢量积成正比。

第三部分表明转矩的变化与定转子磁链的关系,当定转子磁链夹角为 π / 2 \pi/2 π/2时,该项为零,当定转子磁链同向时,转矩取得最大的衰减速度。

直接转矩控制中假设定转子磁链角度与幅值都相近,因此使用定子磁链代替转子磁链,作为转矩导数的第二项的近似,并认为转矩导数的第二项为转矩导数的主项。另外,假设定子磁链的变化主要受到定子电压的影响,而忽略磁链产生的磁链导数项。从而可以得到以下的近似公式

{ d Ψ ˙ s d t ≈ U ˙ s d T d t ≈ n p 1 L σ ( Ψ ˙ s × U ˙ s ) \left\{\begin{aligned} \frac{d\dot \Psi_s}{dt} &\approx \dot U_{s} \\ \frac{d T}{dt} &\approx n_p \frac{1}{L_{\sigma}} (\dot \Psi_{s} \times \dot U_{s}) \end{aligned}\right. dtdΨ˙sdtdTU˙snpLσ1(Ψ˙s×U˙s)

其中,磁链相量与电压相量分别定义如下

Ψ ˙ s = ψ s α + j ψ s β , U ˙ s = u s α + j u s β \dot \Psi_{s} = \psi_{s\alpha} + j\psi_{s\beta}, \dot U_{s} = u_{s\alpha} + j u_{s\beta} Ψ˙s=ψsα+jψsβ,U˙s=usα+jusβ

如果只考虑磁链幅值变化的符号,以及转矩变化的符号,则可以更进一步地使用相量运算的符号来表示磁链幅值与转矩变化的符号如下。

s i g n ( d ∣ Ψ ˙ s ∣ d t ) = { 1 Ψ ˙ s ⋅ U ˙ s > 0 − 1 Ψ ˙ s ⋅ U ˙ s < 0 \mathrm{sign}(\frac{d|\dot \Psi_{s}|}{dt}) = \begin{cases} 1 & \dot \Psi_s \cdot \dot U_s > 0 \\ -1 & \dot \Psi_s \cdot \dot U_s < 0 \\ \end{cases} sign(dtdΨ˙s)={11Ψ˙sU˙s>0Ψ˙sU˙s<0

s i g n ( d T d t ) = { 1 Ψ ˙ s × U ˙ s > 0 − 1 Ψ ˙ s × U ˙ s < 0 \mathrm{sign}(\frac{dT}{dt}) = \begin{cases} 1 & \dot \Psi_s \times \dot U_s > 0 \\ -1 & \dot \Psi_s \times \dot U_s < 0 \\ \end{cases} sign(dtdT)={11Ψ˙s×U˙s>0Ψ˙s×U˙s<0

变频器驱动下的电压矢量作用表

对于变频器控制的电机,实际输出的非零定子电压相量只有六种,即六种非零电压矢量,因此可以对每一种定子电压矢量进行讨论。

将六个电压矢量在平面上依照逆时针编号为 V 1 , ⋯   , V 6 V_1, \cdots, V_6 V1,,V6,并记 V 1 , V 2 V_1, V_2 V1,V2之间的区域为扇区I,逆时针依次编号各个扇区。按照扇区对定子磁链进行分类,讨论定子磁链与电压矢量之间的作用,结果如下。

Ψ ˙ s × U ˙ s \dot \Psi_s \times \dot U_s Ψ˙s×U˙s V 1 V_1 V1 V 2 V_2 V2 V 3 V_3 V3 V 4 V_4 V4 V 5 V_5 V5 V 6 V_6 V6
I-+++--
II--+++-
III---+++
IV+---++
V++---+
VI+++---
Ψ ˙ s ⋅ U ˙ s \dot \Psi_s \cdot \dot U_s Ψ˙sU˙s V 1 V_1 V1 V 2 V_2 V2 V 3 V_3 V3 V 4 V_4 V4 V 5 V_5 V5 V 6 V_6 V6
I++--
II++--
III-++-
IV--++
V--++
VI+--+

从而可以得到在每个扇区中,要使得磁链幅值变化以及转矩变化,应该作用的电压矢量,即电压矢量表。

( τ , ϕ ) (\tau, \phi) (τ,ϕ) ( − 1 , − 1 ) (-1, -1) (1,1) ( − 1 , 0 ) (-1, 0) (1,0) ( − 1 , 1 ) (-1, 1) (1,1) ( 1 , − 1 ) (1, -1) (1,1) ( 1 , 0 ) (1, 0) (1,0) ( 1 , 1 ) (1, 1) (1,1)
I V 5 V_5 V5 V 6 V_6 V6 V 1 V_1 V1 V 4 V_4 V4 V 3 V_3 V3 V 2 V_2 V2
II V 6 V_6 V6 V 1 V_1 V1 V 2 V_2 V2 V 5 V_5 V5 V 4 V_4 V4 V 3 V_3 V3
III V 1 V_1 V1 V 2 V_2 V2 V 3 V_3 V3 V 6 V_6 V6 V 5 V_5 V5 V 4 V_4 V4
IV V 2 V_2 V2 V 3 V_3 V3 V 4 V_4 V4 V 1 V_1 V1 V 6 V_6 V6 V 5 V_5 V5
V V 3 V_3 V3 V 4 V_4 V4 V 5 V_5 V5 V 2 V_2 V2 V 1 V_1 V1 V 6 V_6 V6
VI V 4 V_4 V4 V 5 V_5 V5 V 6 V_6 V6 V 3 V_3 V3 V 2 V_2 V2 V 1 V_1 V1

其中,

τ = s i g n ( d T d t ) \tau = \mathrm{sign}(\frac{dT}{dt}) τ=sign(dtdT)

ϕ = s i g n ( d ∣ Ψ ˙ s ∣ d t ) \phi = \mathrm{sign}(\frac{d|\dot \Psi_{s}|}{dt}) ϕ=sign(dtdΨ˙s)

值得注意的是, ϕ \phi ϕ取值为 { − 1 , 0 , 1 } \{-1, 0, 1\} {1,0,1} τ \tau τ取值为 { − 1 , 1 } \{-1, 1\} {1,1}是由扇区的划分方式导致的。

如果将扇区的角度各顺时针旋转 π / 6 \pi/6 π/6,则此时各个电压矢量恰在同编号的扇区中央,此时 ϕ \phi ϕ取值为 { − 1 , 1 } \{-1, 1\} {1,1} τ \tau τ取值为 { − 1 , 0 , 1 } \{-1, 0, 1\} {1,0,1},可能可以降低转矩纹波,但是会导致磁链纹波增大。

按照此扇区对定子磁链进行分类,讨论定子磁链与电压矢量之间的作用,结果如下。

Ψ ˙ s ⋅ U ˙ s \dot \Psi_s \cdot \dot U_s Ψ˙sU˙s V 1 V_1 V1 V 2 V_2 V2 V 3 V_3 V3 V 4 V_4 V4 V 5 V_5 V5 V 6 V_6 V6
I++---+
II+++---
III-+++--
IV--+++-
V---+++
VI+---++
Ψ ˙ s × U ˙ s \dot \Psi_s \times \dot U_s Ψ˙s×U˙s V 1 V_1 V1 V 2 V_2 V2 V 3 V_3 V3 V 4 V_4 V4 V 5 V_5 V5 V 6 V_6 V6
I++--
II-++-
III--++
IV--++
V+--+
VI++--

从而可以得到在每个扇区中,要使得磁链幅值变化以及转矩变化,应该作用的电压矢量,即电压矢量表。

( ϕ , τ ) (\phi, \tau) (ϕ,τ) ( − 1 , − 1 ) (-1, -1) (1,1) ( − 1 , 0 ) (-1, 0) (1,0) ( − 1 , 1 ) (-1, 1) (1,1) ( 1 , − 1 ) (1, -1) (1,1) ( 1 , 0 ) (1, 0) (1,0) ( 1 , 1 ) (1, 1) (1,1)
I V 5 V_5 V5 V 4 V_4 V4 V 3 V_3 V3 V 6 V_6 V6 V 1 V_1 V1 V 2 V_2 V2
II V 6 V_6 V6 V 5 V_5 V5 V 4 V_4 V4 V 1 V_1 V1 V 2 V_2 V2 V 3 V_3 V3
III V 1 V_1 V1 V 6 V_6 V6 V 5 V_5 V5 V 2 V_2 V2 V 3 V_3 V3 V 4 V_4 V4
IV V 2 V_2 V2 V 1 V_1 V1 V 6 V_6 V6 V 3 V_3 V3 V 4 V_4 V4 V 5 V_5 V5
V V 3 V_3 V3 V 2 V_2 V2 V 1 V_1 V1 V 4 V_4 V4 V 5 V_5 V5 V 6 V_6 V6
VI V 4 V_4 V4 V 3 V_3 V3 V 2 V_2 V2 V 5 V_5 V5 V 6 V_6 V6 V 1 V_1 V1

直接转矩控制系统的实现

直接转矩控制中分成三个控制器,包括给出参考转矩信号的速度环控制器,控制转矩变化的Bang-Bang控制器以及控制磁链变化的Bang-Bang控制器。

速度环控制器的PI控制器实现与MTPA与MTPV矢量控制中给出的设计原则相同,可以参考前文转速环设计,在此不再赘述。

Bang-Bang控制器使用滞环比较器产生转矩的变化参考信号 τ \tau τ与磁链的变化参考信号 ϕ \phi ϕ,并结合两个量得到作用的电压矢量。滞环比较器的滞环宽度越小,则转矩与磁链的纹波幅值越小,但开关频率越高。

对于三个参考变化信号的Bang-Bang控制器,滞环分成三个阈值,并产生三个参考变化信号输出。

关于转载

本博客所有内容来源于网络、书籍、和各类手册。
内容旨为方便查询、总结备份、开源分享。
部分转载内容均有注明出处,如有侵权请告知,马上删除。

本文章未经作者允许不能转载。

  • 0
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值