矩阵分析
文章平均质量分 90
「已注销」
这个作者很懒,什么都没留下…
展开
-
矩阵正态分布
正态分布关于正态分布的由来,在文章《正态分布的前世今生》中写的很清楚,正态分布是由二项分布而来。正态分布的密度形式首次发现是在棣莫弗-拉普拉斯中心极限定理中。读者可以通过以下几个链接深入了解正态分布的含义 正态分布的前世今生(上) 正态分布的前世今生(下) 为什么正态分布如此常见棣莫弗-拉普拉斯中心极限定理 设随机变量Xn(n=1,2,⋯)Xn(n=1,2,⋯)X_n(n=1,2,...原创 2018-02-27 23:08:18 · 7984 阅读 · 0 评论 -
矩阵奇异值分解
Notations: (1)Diag(x)Diag(x)\text{Diag}(\boldsymbol{x})表示以矢量为矩阵对角线元素构成对角阵,如Diag(a,b)=(a00b)Diag(a,b)=(a00b)\text{Diag}(a,b)=\left({ \begin{array}{cccc}a&0\\0&b\end{array} }\right); (2)粗体符号表示矩...原创 2017-05-29 17:25:49 · 3508 阅读 · 0 评论 -
高斯相乘引理(Gaussian Reproduction Lemma)
个人博客:www.qiuyun-blog.cn高斯PDF标量实高斯分布N(x∣a,A)=12πAexp[−(x−a)22A]\mathcal{N}(x|a,A)=\frac{1}{\sqrt{2\pi A} }\exp \left[{-\frac{(x-a)^2}{2A} }\right]N(x∣a,A)=2πA1exp[−2A(x−a)2]标量复高斯分布Nc(x∣a...原创 2019-05-06 20:20:01 · 2856 阅读 · 5 评论