Stein引理(Stein's lemma)

Stein引理指出,如果X是均值为μ、方差为σ²的高斯随机变量,且映射g的期望E[g(X)(X-μ)]存在,那么E[g'(X)]乘以σ²等于E[g(X)(X-μ)]。当X和Y是联合高斯时,可以利用这个引理来表达协方差Cov(g(X), Y)。证明中使用了分部积分公式来展示这一关系。" 108263392,9834608,iOS App开发环境配置指南,"['iOS开发', 'APP开发', 'Xcode集成开发环境', 'iOS SDK', 'Mac OS开发']
摘要由CSDN通过智能技术生成

Stein引理:假设 X X X是均值为 μ \mu μ,方差 σ 2 \sigma^2 σ2的高斯随机变量(Gaussian random variable)。进一步假设映射 g g g存在期望 E [ g ( X ) ( X − μ ) ] \mathbb{E}[g(X)(X-\mu)] E[g(X)(Xμ)] E [ g ′ ( X ) ] \mathbb{E}[g'(X)] E[g(X)],则有
E [ g ( X ) ( X − μ ) ] = σ 2 E [ g ′ ( X ) ] \mathbb{E}[g(X)(X-\mu)]=\sigma^2\mathbb{E}[g'(X)] E[g(X)(Xμ)]=σ2E[g(X)]一般说,假设 X X X

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值