gcd(x,y)=p
gcd(x/p,y/p)=1
枚举每个素数p,计算1~n/p中有多少对互质的数
f[i]表示1~i中有多少个与i互质的数,即phi(i)
g[i]表示f[i]的前缀和
ans=2*∑g[n/p]-cnt
cnt是n以内素数的个数
gcd(x/p,y/p)=1
枚举每个素数p,计算1~n/p中有多少对互质的数
f[i]表示1~i中有多少个与i互质的数,即phi(i)
g[i]表示f[i]的前缀和
ans=2*∑g[n/p]-cnt
cnt是n以内素数的个数
为什么?因为不能选p和p这种情况
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#define maxn 10000100
using namespace std;
int prime[maxn],phi[maxn];
bool vis[maxn];
long long g[maxn];
long long ans;
int n,tot;
int main()
{
scanf("%d",&n);
phi[1]=1;g[1]=1;
for (int i=2;i<=n;i++)
{
if (!vis[i])
{
prime[++tot]=i;phi[i]=i-1;
}
for (int j=1;j<=tot && prime[j]*i<=n;j++)
{
vis[prime[j]*i]=1;
if (i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
g[i]=(long long)g[i-1]+phi[i];
}
for (int i=1;i<=tot;i++) ans+=g[n/prime[i]];
printf("%lld\n",ans*2-tot);
return 0;
}