线性代数(八):二次型(续)

二次型(续)

惯性定理很容易得到如下推论:
推论8.2:任何实二次型均可经过非退化的线性变换化为规范形且规范形是唯一的。即,任意实对称矩阵必合同于如下形式的对角矩阵: D n = [ 1 1 ⋱ 1 − 1 ⋱ − 1 0 ⋱ 0 ] n × n ( 1 ) D_{n}=\begin{bmatrix} 1\\ &1\\ &&\ddots\\ &&&1\\ &&&&-1\\ &&&&&\ddots\\ &&&&&&-1\\ &&&&&&&0\\ &&&&&&&&\ddots\\ &&&&&&&&&0\end{bmatrix}_{n\times n}\qquad(1) Dn= 1111100 n×n(1)

Remark:
问:惯性定理只保证了对角元素 1 1 1 − 1 -1 1的个数相同,并没有确定其次序的问题,那怎么能确保一定能合同于上述形式呢?
答: − 1 与 1 -1与1 11的任意次序可通过对称行列初等变换来交换对角元素的位置,而变化前后的两个对角阵满足合同关系的定义式,即对称行初等变换不影响合同关系,由合同的传递性即可得出上述命题的正确性。

定义8.6:实二次型的标准形中正平方项的个数 p p p称作 正惯性指数,负平方项的个数 q q q称作 负惯性指数,二者的差 ( p − q ) (p-q) (pq)称作 符号差

推论8.3:实对称矩阵 A ≃ B ⟺ r ( A ) = r ( B ) A\simeq B\Longleftrightarrow r(A)=r(B) ABr(A)=r(B)且二者正惯性指数相同 ⟺ A 、 B \Longleftrightarrow A、B AB的正、负特征值个数分别相同
证明:若 A ≃ B A\simeq B AB,则 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)
   \quad\ \ \quad   由推论8.2:存在规范形对角阵使得: A ≃ D n A\simeq D_{n} ADn( D n D_{n} Dn如(1)式定义)
   \quad\ \ \quad   则, B ≃ D n B\simeq D_{n} BDn
   \quad\ \ \quad   显然,二者正惯性指数也应相同。
   \quad\ \ \quad   反过来,若 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)且二者正惯性指数相同
   \quad\ \ \quad   那么, A 、 B A、B AB有相同的规范形矩阵 D n D_{n} Dn
   \quad\ \ \quad   即, A ≃ D n A\simeq D_{n} ADn B ≃ D n B\simeq D_{n} BDn A ≃ B A\simeq B AB

   \quad\ \ \quad   实对称矩阵可合同于由特征值构成的标准形对角矩阵,即 A ≃ D A A\simeq D_{A} ADA, B ≃ D B B\simeq D_{B} BDB
   \quad\ \ \quad    A ≃ B A\simeq B AB,则 D A ≃ D B D_{A}\simeq D_{B} DADB
   \quad\ \ \quad   那么 r ( D A ) = r ( D B ) r(D_A)=r(D_B) r(DA)=r(DB) D A , D B D_{A},D_{B} DADB的正惯性指数相同
   \quad\ \ \quad   则, A 、 B A、B AB的正、负特征值个数均分别相同。
   \quad\ \ \quad   反之,若 A 、 B A、B AB的正、负特征值个数均相同
   \quad\ \ \quad   那么, A 、 B A、B AB各自的标准形对角阵的正负对角元素个数分别相同。
   \quad\ \ \quad   又,标准形对角阵总可经过非退化线性变换为规范形对角阵
   \quad\ \ \quad   则, A , B A,B A,B合同于相同的规范形,故 A ≃ B A\simeq B AB

定义8.7:
(1) 若实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 对任意非零 X ⃗ ∈ R n \vec{X}\in R^n X Rn均为正,则该二次型称为 正定二次型 A A A称作 正定矩阵
(2) 若实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 对任意非零 X ⃗ ∈ R n \vec{X}\in R^n X Rn均为负,则该二次型称为 负定二次型 A A A称作 负定矩阵
(3) 若实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 对任意非零 X ⃗ ∈ R n \vec{X}\in R^n X Rn均非负,则该二次型称为 半正定二次型 A A A称作 半正定矩阵
(4) 若实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 对任意非零 X ⃗ ∈ R n \vec{X}\in R^n X Rn均非正,则该二次型称为 半负定二次型 A A A称作 半负定矩阵
(5) 若实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 既不是半正定也不是半负定二次型,则称该二次型 不定

定理8.4:
(1) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 正定 ⟺ \Longleftrightarrow A A A的正惯性指数等于 r ( A ) = n r(A)=n r(A)=n
(2) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 负定 ⟺ \Longleftrightarrow A A A的负惯性指数等于 r ( A ) = n r(A)=n r(A)=n
(3) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 半正定 ⟺ \Longleftrightarrow A A A的正惯性指数等于 r ( A ) r(A) r(A)
(4) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 半负定 ⟺ \Longleftrightarrow A A A的负惯性指数等于 r ( A ) r(A) r(A)

通过非退化线性变换 X ⃗ = P Y ⃗ \vec{X}=P\vec{Y} X =PY ,任意实二次型均可化为标准形: f = X ⃗ T A X ⃗ = d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 ,( d i ∈ R , i = 1 , … , n ) f=\vec{X}^TA\vec{X}=d_1y_1^2+d_2y_2^2+\dots+d_ny_n^2,(d_i\in R,i=1,\dots,n) f=X TAX =d1y12+d2y22++dnyn2,(diRi=1,,n
(1) 证明:
充分性:
若该实二次型正定,则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0均有 f > 0 f>0 f>0,不妨取: X ⃗ i = P e ⃗ i ( i = 1 , 2 , … , n ) \vec{X}_i=P\vec{e}_i\qquad(i=1,2,\dots,n) X i=Pe i(i=1,2,,n) Y ⃗ i = P − 1 X ⃗ i = e ⃗ i ( i = 1 , 2 , … , n ) \vec{Y}_i=P^{-1}\vec{X}_i=\vec{e}_i\qquad(i=1,2,\dots,n) Y i=P1X i=e i(i=1,2,,n)那么将 Y ⃗ i \vec{Y}_i Y i分别代入二次型可得: d i > 0 ( i = 1 , 2 , … , n ) d_i>0\qquad(i=1,2,\dots,n) di>0(i=1,2,,n) A A A的正惯性指数等于 n n n,且 r ( A ) = n r(A)=n r(A)=n.
必要性:
A A A的正惯性指数等于 r ( A ) = n r(A)=n r(A)=n,即 d i > 0 ( i = 1 , 2 , … , n ) d_i>0\qquad(i=1,2,\dots,n) di>0(i=1,2,,n)
则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0,均有 Y ⃗ = P − 1 X ⃗ ≠ 0 \vec{Y}=P^{-1}\vec{X}\ne0 Y =P1X =0,使得 f ( X ⃗ ) = d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 > 0 f(\vec{X})=d_1y_1^2+d_2y_2^2+\dots+d_ny_n^2>0 f(X )=d1y12+d2y22++dnyn2>0满足二次型正定的定义。(证毕)
(2) 证明:
充分性:
若该实二次型负定,则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0均有 f < 0 f<0 f<0,不妨取: X ⃗ i = P e ⃗ i ( i = 1 , 2 , … , n ) \vec{X}_i=P\vec{e}_i\qquad(i=1,2,\dots,n) X i=Pe i(i=1,2,,n) Y ⃗ i = P − 1 X ⃗ i = e ⃗ i ( i = 1 , 2 , … , n ) \vec{Y}_i=P^{-1}\vec{X}_i=\vec{e}_i\qquad(i=1,2,\dots,n) Y i=P1X i=e i(i=1,2,,n)那么将 Y ⃗ i \vec{Y}_i Y i分别代入二次型可得: d i < 0 ( i = 1 , 2 , … , n ) d_i<0\qquad(i=1,2,\dots,n) di<0(i=1,2,,n) A A A的负惯性指数等于 n n n,且 r ( A ) = n r(A)=n r(A)=n.
必要性:
A A A的负惯性指数等于 r ( A ) = n r(A)=n r(A)=n,即 d i < 0 ( i = 1 , 2 , … , n ) d_i<0\qquad(i=1,2,\dots,n) di<0(i=1,2,,n)
则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0,均有 Y ⃗ = P − 1 X ⃗ ≠ 0 \vec{Y}=P^{-1}\vec{X}\ne0 Y =P1X =0,使得 f ( X ⃗ ) = d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 < 0 f(\vec{X})=d_1y_1^2+d_2y_2^2+\dots+d_ny_n^2<0 f(X )=d1y12+d2y22++dnyn2<0满足二次型负定的定义。(证毕)
(3) 证明:
充分性:
若该实二次型半正定,则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0均有 f ≥ 0 f\ge0 f0,不妨取: X ⃗ i = P e ⃗ i ( i = 1 , 2 , … , n ) \vec{X}_i=P\vec{e}_i\qquad(i=1,2,\dots,n) X i=Pe i(i=1,2,,n) Y ⃗ i = P − 1 X ⃗ i = e ⃗ i ( i = 1 , 2 , … , n ) \vec{Y}_i=P^{-1}\vec{X}_i=\vec{e}_i\qquad(i=1,2,\dots,n) Y i=P1X i=e i(i=1,2,,n)那么将 Y ⃗ i \vec{Y}_i Y i分别代入二次型可得: d i ≥ 0 ( i = 1 , 2 , … , n ) d_i\ge0\qquad(i=1,2,\dots,n) di0(i=1,2,,n)即不存在负惯性指数,则正惯性指数即为 r ( A ) r(A) r(A).
必要性:
A A A的正惯性指数等于 r ( A ) r(A) r(A),即不存在负惯性指数, d i ≥ 0 ( i = 1 , 2 , … , n ) d_i\ge0\qquad(i=1,2,\dots,n) di0(i=1,2,,n)
则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0,均有 Y ⃗ = P − 1 X ⃗ ≠ 0 \vec{Y}=P^{-1}\vec{X}\ne0 Y =P1X =0,使得 f ( X ⃗ ) = d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 ≥ 0 f(\vec{X})=d_1y_1^2+d_2y_2^2+\dots+d_ny_n^2\ge0 f(X )=d1y12+d2y22++dnyn20满足二次型半正定的定义。(证毕)
(4) 证明:
充分性:
若该实二次型半负定,则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0均有 f ≤ 0 f\le0 f0,不妨取: X ⃗ i = P e ⃗ i ( i = 1 , 2 , … , n ) \vec{X}_i=P\vec{e}_i\qquad(i=1,2,\dots,n) X i=Pe i(i=1,2,,n) Y ⃗ i = P − 1 X ⃗ i = e ⃗ i ( i = 1 , 2 , … , n ) \vec{Y}_i=P^{-1}\vec{X}_i=\vec{e}_i\qquad(i=1,2,\dots,n) Y i=P1X i=e i(i=1,2,,n)那么将 Y ⃗ i \vec{Y}_i Y i分别代入二次型可得: d i ≤ 0 ( i = 1 , 2 , … , n ) d_i\le0\qquad(i=1,2,\dots,n) di0(i=1,2,,n)即不存在正惯性指数,则负惯性指数即为 r ( A ) r(A) r(A).
必要性:
A A A的负惯性指数等于 r ( A ) r(A) r(A),即不存在正惯性指数, d i ≤ 0 ( i = 1 , 2 , … , n ) d_i\le0\qquad(i=1,2,\dots,n) di0(i=1,2,,n)
则对任意 X ⃗ ≠ 0 \vec{X}\ne0 X =0,均有 Y ⃗ = P − 1 X ⃗ ≠ 0 \vec{Y}=P^{-1}\vec{X}\ne0 Y =P1X =0,使得 f ( X ⃗ ) = d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 ≤ 0 f(\vec{X})=d_1y_1^2+d_2y_2^2+\dots+d_ny_n^2\le0 f(X )=d1y12+d2y22++dnyn20满足二次型半负定的定义。(证毕)

推论8.4:
(1)实对称矩阵 A A A正定 ⟺ \Longleftrightarrow 存在可逆矩阵 P P P使得 P T A P = E P^TAP=E PTAP=E;
(2)实对称矩阵 A A A负定 ⟺ \Longleftrightarrow 存在可逆矩阵 P P P使得 P T A P = − E P^TAP=-E PTAP=E;
(3)实对称矩阵 A A A半正定 ⟺ \Longleftrightarrow 存在可逆矩阵 P P P使得 P T A P = [ E r ( A ) × r ( A ) 0 0 0 ] P^TAP=\begin{bmatrix}E_{r(A)\times r(A)}&0\\0&0\end{bmatrix} PTAP=[Er(A)×r(A)000];
(4)实对称矩阵 A A A半负定 ⟺ \Longleftrightarrow 存在可逆矩阵 P P P使得 P T A P = [ − E r ( A ) × r ( A ) 0 0 0 ] P^TAP=\begin{bmatrix}-E_{r(A)\times r(A)}&0\\0&0\end{bmatrix} PTAP=[Er(A)×r(A)000].

推论8.5:
(1) 正定矩阵 A A A的行列式为正;
(2) 奇数阶负定矩阵 A A A的行列式为负;偶数阶负定矩阵 A A A的行列式为正,即 ( − 1 ) n d e t ( A n × n ) > 0 (-1)^ndet(A_{n\times n})>0 (1)ndet(An×n)>0
(3) 半正定矩阵行列式为非负;
(4) 偶数阶半负定矩阵行列式为非负,奇数阶半负定矩阵行列式为非正,即 ( − 1 ) n d e t ( A n × n ) ≥ 0 (-1)^ndet(A_{n\times n})\ge0 (1)ndet(An×n)0

推论8.6:
(1) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 正定 ⟺ \Longleftrightarrow A A A的特征值均为正;
(2) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 负定 ⟺ \Longleftrightarrow A A A的特征值均为负;
(3) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 半正定 ⟺ \Longleftrightarrow A A A的特征值非负;
(4) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 半负定 ⟺ \Longleftrightarrow A A A的特征值非正。

任意实二次型均可通过正交变换 X ⃗ = C Y ⃗ \vec{X}=C\vec{Y} X =CY ,化为标准形: f = X ⃗ T A X ⃗ = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 ,( λ i ∈ R 为 A 的特征值, i = 1 , … , n ) f=\vec{X}^TA\vec{X}=\lambda_1y_1^2+\lambda_2y_2^2+\dots+\lambda_ny_n^2,(\lambda_i\in R为A的特征值,i=1,\dots,n) f=X TAX =λ1y12+λ2y22++λnyn2,(λiRA的特征值,i=1,,n由定理8.4:可得推论8.6的成立。
由推论8.6还可进一步验证推论8.5的正确性,此外还可得知:

推论8.7:
(1) 正定矩阵 A A A的迹为正;
(2) 负定矩阵 A A A的迹为负;
(3) 半正定矩阵 A A A的迹为非负;
(4) 半负定矩阵 A A A的迹为非正。

定义8.8:设 A A A为实对称矩阵,则顺序取前 k k k行、前 k k k列交叉处的元素构成的 k k k阶对称方阵 A k A_k Ak称为 A A A k k k阶顺序主子阵,而 d e t ( A k ) det(A_k) det(Ak) 称作其 k阶顺序主子式.
定义8.8:设 A A A为实对称矩阵,则任取 k k k行并对应取 k k k列,交叉处的元素构成的 k k k阶对称方阵 A k A_k Ak称为 A A A k k k阶主子阵,而 d e t ( A k ) det(A_k) det(Ak) 称作其 k阶主子式.

定理8.5:(Sylvester定理)
(1) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 正定 ⟺ \Longleftrightarrow A A A的所有顺序主子式为正;
(2) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 负定 ⟺ \Longleftrightarrow A A A的所有顺序主子式满足 ( − 1 ) k d e t ( A k ) > 0 (-1)^kdet(A_k)>0 (1)kdet(Ak)>0(奇数阶为负,偶数阶为正);
(3) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 半正定 ⟺ \Longleftrightarrow A A A的所有主子式非负;
(4) n n n元实二次型 f = X ⃗ T A X ⃗ f=\vec{X}^TA\vec{X} f=X TAX 半负定 ⟺ \Longleftrightarrow A A A的所有主子式满足 ( − 1 ) k d e t ( A k ) ≥ 0 (-1)^kdet(A_k)\ge0 (1)kdet(Ak)0(奇数阶为非正,偶数阶为非负)

(1) 证明:
必要性:
若实二次型正定,则对任意非零 X ⃗ ∈ R n \vec{X}\in R^n X Rn,均使得二次型为正,不妨取 X ⃗ k = [ x 1 , x 2 , x 3 , … , x k , 0 , 0 , … , 0 ] 1 × n T ,其中 1 ≤ k ≤ n , x 1 、 x 2 、 x 3 、 … 、 x k ∈ R \vec{X}_k=[x_1,x_2,x_3,\dots,x_k,0,0,\dots,0]_{1\times n}^T,其中1\le k\le n,x_1、x_2、x_3、\dots、x_k\in R X k=[x1,x2,x3,,xk,0,0,,0]1×nT,其中1knx1x2x3xkR带入二次型则有: f ( x 1 ′ , x 2 ′ , x 3 ′ , … , x n ′ ) = ∑ i , j = 1 n a i j x i ′ x j ′ = f ( x 1 , x 2 , x 3 , … , x k , 0 , 0 , … , 0 ) = ∑ i , j = 1 k a i j x i x j = [ x 1 , x 2 , x 3 , … , x k ] A k [ x 1 x 2 x 3 ⋮ x k ] 对任意非零 [ x 1 , x 2 , x 3 , … , x k ] T ∈ R k 恒为正 f(x'_1,x'_2,x'_3,\dots,x'_n)=\sum_{i,j=1}^na_{ij}x'_ix'_j=f(x_1,x_2,x_3,\dots,x_k,0,0,\dots,0)=\sum_{i,j=1}^ka_{ij}x_ix_j=[x_1,x_2,x_3,\dots,x_k]A_k\begin{bmatrix}x_1\\x_2\\x_3\\\vdots\\x_k\end{bmatrix}对任意非零[x_1,x_2,x_3,\dots,x_k]^T\in R^k恒为正 f(x1,x2,x3,,xn)=i,j=1naijxixj=f(x1,x2,x3,,xk,0,0,,0)=i,j=1kaijxixj=[x1,x2,x3,,xk]Ak x1x2x3xk 对任意非零[x1,x2,x3,,xk]TRk恒为正说明 A A A k k k阶顺序主子阵 A k A_k Ak也为正定矩阵,那么 d e t ( A k ) > 0 det(A_k)>0 det(Ak)>0.
充分性:(数学归纳法)
n = 1 n=1 n=1时, f = a 11 x 1 2 f=a_{11}x_1^2 f=a11x12 a 11 > 0 a_{11}>0 a11>0,则 f f f正定;
假设对任意的 n − 1 n-1 n1元实二次型均成立,即各阶顺序主子式为正的 n − 1 n-1 n1阶实对称矩阵为正定矩阵
下面讨论各阶顺序主子式为正的 n n n阶实对称矩阵 A A A的正定性:
进行矩阵分块: A n = [ A n − 1 a a T a n n ] A_n=\begin{bmatrix}A_{n-1}&a\\a^T&a_{nn}\end{bmatrix} An=[An1aTaann]由于 A n − 1 A_{n-1} An1的各阶顺序主子式均是 A A A的各阶顺序主子式,则 A n − 1 A_{n-1} An1正定,即 ∃ 可逆矩阵 P 1   s . t .   P 1 T A n − 1 P 1 = E n − 1 \exists可逆矩阵P_1\ s.t.\ P_1^TA_{n-1}P_1=E_{n-1} 可逆矩阵P1 s.t. P1TAn1P1=En1不妨取可逆矩阵 Q 1 = [ P 1 0 0 1 ] Q_1=\begin{bmatrix}P_1&0\\0&1\end{bmatrix} Q1=[P1001] Q 1 T A Q 1 = [ P 1 0 0 1 ] T [ A n − 1 a a T a n n ] [ P 1 0 0 1 ] = [ P 1 T A n − 1 P 1 P 1 T a a T P 1 a n n ] = [ E n − 1 P 1 T a a T P 1 a n n ] Q_1^TAQ_1=\begin{bmatrix}P_1&0\\0&1\end{bmatrix}^T \begin{bmatrix}A_{n-1}&a\\a^T&a_{nn}\end{bmatrix} \begin{bmatrix}P_1&0\\0&1\end{bmatrix} =\begin{bmatrix}P_1^TA_{n-1}P_1&P_1^Ta\\a^TP_1&a_{nn}\end{bmatrix} =\begin{bmatrix}E_{n-1}&P_1^Ta\\a^TP_1&a_{nn}\end{bmatrix} Q1TAQ1=[P1001]T[An1aTaann][P1001]=[P1TAn1P1aTP1P1Taann]=[En1aTP1P1Taann]进一步取可逆矩阵 Q 2 = [ E n − 1 − P 1 T a 0 1 ] Q_2=\begin{bmatrix}E_{n-1}&-P_1^Ta\\0&1\end{bmatrix} Q2=[En10P1Ta1] Q 2 T Q 1 T A Q 1 Q 2 = [ E n − 1 − P 1 T a 0 1 ] T [ E n − 1 P 1 T a a T P 1 a n n ] [ E n − 1 − P 1 T a 0 1 ] = [ E n − 1 0 0 a n n − a T P 1 P 1 T a ] = [ E n − 1 0 0 b ] Q_2^TQ_1^TAQ_1Q_2 =\begin{bmatrix}E_{n-1}&-P_1^Ta\\0&1\end{bmatrix}^T \begin{bmatrix}E_{n-1}&P_1^Ta\\a^TP_1&a_{nn}\end{bmatrix} \begin{bmatrix}E_{n-1}&-P_1^Ta\\0&1\end{bmatrix} =\begin{bmatrix}E_{n-1}&0\\0&a_{nn}-a^TP_1P_1^Ta\end{bmatrix} =\begin{bmatrix}E_{n-1}&0\\0&b\end{bmatrix} Q2TQ1TAQ1Q2=[En10P1Ta1]T[En1aTP1P1Taann][En10P1Ta1]=[En100annaTP1P1Ta]=[En100b]由上式有 d e t ( Q 1 Q 2 ) 2 d e t ( A ) = b = a n n − a T P 1 P 1 T a > 0 det(Q_1Q_2)^2det(A)=b=a_{nn}-a^TP_1P_1^Ta>0 det(Q1Q2)2det(A)=b=annaTP1P1Ta>0故取可逆矩阵 Q 3 = [ E n − 1 0 0 1 b ] Q_3=\begin{bmatrix}E_{n-1}&0\\0&\frac{1}{\sqrt{b}}\end{bmatrix} Q3=[En100b 1] Q 3 T Q 2 T Q 1 T A Q 1 Q 2 Q 3 = E Q_3^TQ_2^TQ_1^TAQ_1Q_2Q_3=E Q3TQ2TQ1TAQ1Q2Q3=E意味着若 n n n阶方阵 A A A的顺序主子式均为正,则其可合同于单位阵,故其正定。(证毕)

(2) 证明:
必要性:
若实二次型负定,则对任意非零 X ⃗ ∈ R n \vec{X}\in R^n X Rn,均使得二次型为负,不妨取 X ⃗ k = [ x 1 , x 2 , x 3 , … , x k , 0 , 0 , … , 0 ] 1 × n T ,其中 1 ≤ k ≤ n , x 1 、 x 2 、 x 3 、 … 、 x k ∈ R \vec{X}_k=[x_1,x_2,x_3,\dots,x_k,0,0,\dots,0]_{1\times n}^T,其中1\le k\le n,x_1、x_2、x_3、\dots、x_k\in R X k=[x1,x2,x3,,xk,0,0,,0]1×nT,其中1knx1x2x3xkR带入二次型则有: f ( x 1 ′ , x 2 ′ , x 3 ′ , … , x n ′ ) = ∑ i , j = 1 n a i j x i ′ x j ′ = f ( x 1 , x 2 , x 3 , … , x k , 0 , 0 , … , 0 ) = ∑ i , j = 1 k a i j x i x j = [ x 1 , x 2 , x 3 , … , x k ] A k [ x 1 x 2 x 3 ⋮ x k ] 对任意非零 [ x 1 , x 2 , x 3 , … , x k ] T ∈ R k 恒为负 f(x'_1,x'_2,x'_3,\dots,x'_n)=\sum_{i,j=1}^na_{ij}x'_ix'_j=f(x_1,x_2,x_3,\dots,x_k,0,0,\dots,0)=\sum_{i,j=1}^ka_{ij}x_ix_j=[x_1,x_2,x_3,\dots,x_k]A_k\begin{bmatrix}x_1\\x_2\\x_3\\\vdots\\x_k\end{bmatrix}对任意非零[x_1,x_2,x_3,\dots,x_k]^T\in R^k恒为负 f(x1,x2,x3,,xn)=i,j=1naijxixj=f(x1,x2,x3,,xk,0,0,,0)=i,j=1kaijxixj=[x1,x2,x3,,xk]Ak x1x2x3xk 对任意非零[x1,x2,x3,,xk]TRk恒为负说明 A A A k k k阶顺序主子阵 A k A_k Ak也为负定矩阵,那么 ( − 1 ) k d e t ( A k ) > 0 (-1)^kdet(A_k)>0 (1)kdet(Ak)>0.
充分性:(数学归纳法)
n = 1 n=1 n=1时, f = a 11 x 1 2 f=a_{11}x_1^2 f=a11x12 a 11 < 0 a_{11}<0 a11<0,则 f f f负定;
假设对任意的 n − 1 n-1 n1元实二次型均成立,即:
任意奇数阶顺序主子式为负、偶数阶为正的 n − 1 n-1 n1阶实对称矩阵为负定矩阵
下面讨论任意奇数阶顺序主子式为负、偶数阶为正的 n n n阶实对称矩阵 A A A的正定性:
进行矩阵分块: A n = [ A n − 1 a a T a n n ] A_n=\begin{bmatrix}A_{n-1}&a\\a^T&a_{nn}\end{bmatrix} An=[An1aTaann]由于 A n − 1 A_{n-1} An1的各阶顺序主子式均是 A A A的各阶顺序主子式,则 A n − 1 A_{n-1} An1负定,即 ∃ 可逆矩阵 P 1   s . t .   P 1 T A n − 1 P 1 = − E n − 1 \exists可逆矩阵P_1\ s.t.\ P_1^TA_{n-1}P_1=-E_{n-1} 可逆矩阵P1 s.t. P1TAn1P1=En1不妨取可逆矩阵 Q 1 = [ P 1 0 0 1 ] Q_1=\begin{bmatrix}P_1&0\\0&1\end{bmatrix} Q1=[P1001] Q 1 T A Q 1 = [ P 1 0 0 1 ] T [ A n − 1 a a T a n n ] [ P 1 0 0 1 ] = [ P 1 T A n − 1 P 1 P 1 T a a T P 1 a n n ] = [ − E n − 1 P 1 T a a T P 1 a n n ] Q_1^TAQ_1=\begin{bmatrix}P_1&0\\0&1\end{bmatrix}^T \begin{bmatrix}A_{n-1}&a\\a^T&a_{nn}\end{bmatrix} \begin{bmatrix}P_1&0\\0&1\end{bmatrix} =\begin{bmatrix}P_1^TA_{n-1}P_1&P_1^Ta\\a^TP_1&a_{nn}\end{bmatrix} =\begin{bmatrix}-E_{n-1}&P_1^Ta\\a^TP_1&a_{nn}\end{bmatrix} Q1TAQ1=[P1001]T[An1aTaann][P1001]=[P1TAn1P1aTP1P1Taann]=[En1aTP1P1Taann]进一步取可逆矩阵 Q 2 = [ E n − 1 P 1 T a 0 1 ] Q_2=\begin{bmatrix}E_{n-1}&P_1^Ta\\0&1\end{bmatrix} Q2=[En10P1Ta1] Q 2 T Q 1 T A Q 1 Q 2 = [ E n − 1 P 1 T a 0 1 ] T [ − E n − 1 P 1 T a a T P 1 a n n ] [ E n − 1 P 1 T a 0 1 ] = [ − E n − 1 0 0 a n n + a T P 1 P 1 T a ] = [ − E n − 1 0 0 b ] Q_2^TQ_1^TAQ_1Q_2 =\begin{bmatrix}E_{n-1}&P_1^Ta\\0&1\end{bmatrix}^T \begin{bmatrix}-E_{n-1}&P_1^Ta\\a^TP_1&a_{nn}\end{bmatrix} \begin{bmatrix}E_{n-1}&P_1^Ta\\0&1\end{bmatrix} =\begin{bmatrix}-E_{n-1}&0\\0&a_{nn}+a^TP_1P_1^Ta\end{bmatrix} =\begin{bmatrix}-E_{n-1}&0\\0&b\end{bmatrix} Q2TQ1TAQ1Q2=[En10P1Ta1]T[En1aTP1P1Taann][En10P1Ta1]=[En100ann+aTP1P1Ta]=[En100b]由上式有 d e t ( Q 1 Q 2 ) 2 d e t ( A ) = b = a n n + a T P 1 P 1 T a { 为正 ( A 为偶数阶方阵 ) 为负 ( A 为奇数阶方阵 ) det(Q_1Q_2)^2det(A)=b=a_{nn}+a^TP_1P_1^Ta\begin{cases}为正\qquad(A为偶数阶方阵)\\为负\qquad(A为奇数阶方阵)\end{cases} det(Q1Q2)2det(A)=b=ann+aTP1P1Ta{为正(A为偶数阶方阵)为负(A为奇数阶方阵)故取可逆矩阵 Q 3 = [ E n − 1 0 0 − 1 ∣ b ∣ ] Q_3=\begin{bmatrix}E_{n-1}&0\\0&\frac{-1}{\sqrt{|b|}}\end{bmatrix} Q3=[En100b 1] Q 3 T Q 2 T Q 1 T A Q 1 Q 2 Q 3 = − E n Q_3^TQ_2^TQ_1^TAQ_1Q_2Q_3=-E_{n} Q3TQ2TQ1TAQ1Q2Q3=En意味着若 n n n阶方阵 A A A的任意顺序主子式满足奇数阶为负偶数阶为正,则其可合同于负单位阵,故其负定。(证毕)

Remark:
若实对称矩阵A正定,则其任意阶主子阵均正定,特别的,对角元素为正;
若实对称矩阵A负定,则其任意阶主子阵均负定,特别的,对角元素为负;

\quad
证明过程与上述定理8.5的必要性证明过程相同,不多加赘述。

(3) 证明:
必要性:
与证明正定时过程类似,此时区别仅在于,取 X ⃗ a , b , c , . . . = [ 0 , … , x a , … , x b , … , x c , … , 0 , … , 0 ] 1 × n T ( 下标代表的位置以外的其它元素必为零,而下标位置不全为零,下标任意 ) ,其中 1 ≤ a , b , c , . . . ≤ n , x a , x b , x c , ⋯ ∈ R \vec{X}_{a,b,c,...}=[0,\dots,x_a,\dots,x_b,\dots,x_c,\dots,0,\dots,0]_{1\times n}^T(下标代表的位置以外的其它元素必为零,而下标位置不全为零,下标任意),其中1\le a,b,c,...\le n,x_a,x_b,x_c,\dots\in R X a,b,c,...=[0,,xa,,xb,,xc,,0,,0]1×nT(下标代表的位置以外的其它元素必为零,而下标位置不全为零,下标任意),其中1a,b,c,...nxa,xb,xc,R
充分性:
若实对称矩阵 A A A的任意k阶主子式均非负,则对于矩阵 A + t E = [ a 11 + t a 12 … a 1 n a 21 a 22 + t … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n + t ] A+tE= \begin{bmatrix} a_{11}+t&a_{12}&\dots&a_{1n}\\ a_{21}&a_{22}+t&\dots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}+t \end{bmatrix} A+tE= a11+ta21an1a12a22+tan2a1na2nann+t 其任意 k ( 1 ≤ k ≤ n ) k(1\le k\le n) k(1kn)阶顺序主子式,(参见) ∣ a 11 + t a 12 … a 1 k a 21 a 22 + t … a 2 k ⋮ ⋮ ⋮ a k 1 a k 2 … a k k + t ∣ = ∑ i = 0 k t i α i ( α i 为该顺序主子阵的 ( k − i ) 阶主子式之和 ) \begin{vmatrix} a_{11}+t&a_{12}&\dots&a_{1k}\\ a_{21}&a_{22}+t&\dots&a_{2k}\\ \vdots&\vdots&&\vdots\\ a_{k1}&a_{k2}&\dots&a_{kk}+t \end{vmatrix}=\sum_{i=0}^kt^i\alpha_i\quad(\alpha_i为该顺序主子阵的(k-i)阶主子式之和) a11+ta21ak1a12a22+tak2a1ka2kakk+t =i=0ktiαi(αi为该顺序主子阵的(ki)阶主子式之和) t > 0 t>0 t>0时为正,换而言之矩阵 A + t E ( t > 0 ) A+tE(t>0) A+tE(t>0)为正定矩阵。
假设 A A A的特征值为 λ i ( i = 1 , … , n ) \lambda_i(i=1,\dots,n) λi(i=1,,n),则 A + t E A+tE A+tE的特征值为 λ i + t ( i = 1 , … , n ) \lambda_i+t(i=1,\dots,n) λi+t(i=1,,n)
由于 t t t为正时, A + t E A+tE A+tE正定,故 λ i + t > 0 ( i = 1 , … , n ) 对任意 t > 0 恒成立 \lambda_i+t>0(i=1,\dots,n)对任意t>0恒成立 λi+t>0(i=1,,n)对任意t>0恒成立 λ i ≥ 0 \lambda_i\ge 0 λi0,则 A A A为半正定矩阵。

(4) 证明:
f ( X ⃗ ) = X ⃗ T A X ⃗ f(\vec{X})=\vec{X}^TA\vec{X} f(X )=X TAX 半负定,则 − f ( X ⃗ ) = X ⃗ T ( − A ) X ⃗ -f(\vec{X})=\vec{X}^T(-A)\vec{X} f(X )=X T(A)X 半正定 ⟺ ( − A ) 的 k 阶主子式非负 \Longleftrightarrow (-A)的k阶主子式非负 (A)k阶主子式非负
( − A ) (-A) (A) k k k阶主子式 D k D_k Dk A A A k k k阶主子式 D k ′ D'_k Dk满足: D k = ( − 1 ) k D k ′ D_k=(-1)^kD'_k Dk=(1)kDk则: ( − A ) 的 k 阶主子式 D k 非负 ⟺ ( − 1 ) k D k ′ 非负,即 A 的奇数阶主子式非正,偶数阶主子式非负(证毕) (-A)的k阶主子式D_k非负\Longleftrightarrow (-1)^kD'_k非负,即A的奇数阶主子式非正,偶数阶主子式非负(证毕) (A)k阶主子式Dk非负(1)kDk非负,即A的奇数阶主子式非正,偶数阶主子式非负(证毕)

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值