一、背景
最近才看到百度的UIE模型(跟不上潮流了),细节就不赘述了,可以参考下面链接。主要思路就是利用了SEL:结构化抽取语言和SSI:结构化模式提示器来实现各类信息抽取场景的大一统,也即是用同样的框架就可以实现实体提取,关系抽取,事件抽取,情感提取等多个任务了。然后就是预训练中有较多的监督数据,因此有些场景的fewshot效果就还可以了,有点拿来就用的内味了。
JayJay:信息抽取大一统:百度中科院发布通用抽取模型UIE,刷新13个IE数据集SOTA!
二、思路简介
笔者主要是参考paddlenlp版本,还有第三方改写paddle后的pytorch版本(这块有点偷懒了,论文代码没有仔细研读)。看下来其实思路也比较简单,就是prompt+mrc的方式,样本输入是[CLS]+prompt+[SEP]+text+[SEP]的输入方式,然后两个全连接一个用来标记start,一个用来标记end,最后和golden_label求一个BCEWithLogitLoss。
三、推理效果
直接拿过来输入几个测试用例,感觉效果尚可
>>> from pprint import pprint
>>> from paddlenlp import Taskflow
>>> schema = ['时间', '选手', '赛事名称'] # Define the schema for entity extraction
>>> ie = Taskflow('information_extraction', schema=schema)
>>> pprint(ie("2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!")) # Better print results using pprint
[{'时间': [{'end': 6,
'probability': 0.9857378532924486,
'start': 0,
'text': '2月8日上午'}],
'赛事名称': [{'end': 23,
'probability': 0.8503089953268272,
'start': 6,
'text': '北京冬奥会自由式滑雪女子大跳台决赛'}],
'选手': [{'end': 31,
'probability': 0.8981548639781138,
'start': 28,
'text': '谷爱凌'}]}]
四、ner上的finetune测试
废话不多说,直接在数据集上测试看看,在人民日报数据集上zeroshot:f1=60.8, fewshot-100样本:f1=85.82, 200样本:f1=86.40,全部数据finetune是96.57。主要结论是,在小样本下有明显优势,在数据充足情况下无明显优势。
全部代码测试都是基于bert4torch框架,这是一个基于pytorch的训练框架,前期以效仿和实现bert4keras的主要功能为主,特点是尽量简洁轻量,提供丰富示例,有兴趣的小伙伴可以试用,欢迎star。
- 人民日报数据集+bert预训练模型
- valid集指标
solution | epoch | f1_token | f1_entity | comment |
---|---|---|---|---|
bert+crf | 18/20 | 96.89 | 96.05 | —— |
bert+crf+init | 18/20 | 96.93 | 96.08 | 用训练数据初始化crf权重 |
bert+crf+freeze | 11/20 | 96.89 | 96.13 | 用训练数据生成crf权重(不训练) |
bert+cascade+crf | 5/20 | 98.10 | 96.26 | crf类别少所以f1_token偏高 |
bert+crf+posseg | 13/20 | 97.32 | 96.55 | 加了词性输入 |
bert+global_pointer | 18/20 | —— | 95.66 | —— |
bert+efficient_global_pointer | 17/20 | —— | 96.55 | —— |
bert+mrc | 7/20 | —— | 95.75 | —— |
bert+span | 13/20 | —— | 96.31 | —— |
bert+tplinker_plus | 20/20 | —— | 95.71 | 长度限制明显 |
uie | 20/20 | —— | 96.57 | zeroshot:f1=60.8, fewshot-100样本:f1=85.82, 200样本:f1=86.40 |