百度UIE:Unified Structure Generation for Universal Information Extraction paper详细解读和相关资料

75 篇文章 7 订阅
61 篇文章 2 订阅
本文介绍了UIE,一种统一的文本到结构生成模型,用于通用信息抽取,通过prompt和structuralschemainstructor实现。模型在多任务和低资源环境下表现出色,通过大规模预训练提升抽取能力,并展示了在实体、关系、事件和情感抽取上的SOTA性能。
摘要由CSDN通过智能技术生成
  1. Prompt
    learning系列之信息抽取模型UIE:https://mp.weixin.qq.com/s/0lNUlUF_x95mED5B9iBpGg
  2. 作者解读:https://www.bilibili.com/video/BV19g411Z7rZ/?spm_id_from=autoNext
  3. bilibili解读:https://www.bilibili.com/video/BV1LW4y1U7ch?spm_id_from=333.337.search-card.all.click
  4. 官方代码:https://github.com/universal-ie/UIE
  5. 代码:https://github.com/heiheiyoyo/uie_pytorch paddle
  6. paddle使用介绍:https://github.com/PaddlePaddle/PaddleNLP/blob/develop/docs/model_zoo/taskflow.md#%E4%BF%A1%E6%81%AF%E6%8A%BD%E5%8F%96
  7. 其他NER模型:https://github.com/z814081807/DeepNER

一、概述

在这里插入图片描述

二、相关问题

问题一:UIE三种语义单元到底是什么意思?

在这里插入图片描述

问题二、UIE中三种语义单元和prompt的关系?

在这里插入图片描述

问题三、loss函数是啥?

生成模型,交叉熵

问题四、预训练如何做?

Dpair: text-to-structure变换能力,Drecord: 解码能力,Dtext:语义encoding能力
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题四、实验效果

4.2监督学习:没有预训练效果都不错,加上预训练效果更好了。
image.png

4.3 few-shot和low-resource效果:证明UIE强大的通用的信息抽取的能力
image.png

4.4 消融实验
不同的预训练任务的作用
image.png

曝光偏差优化带来的提升(10-shot)
image.png

问题5:structural Schema Instructor如何设置?
不应该是一个模板抽取一个关系吗?咋感觉好像打平全都放进去了
image.png

问题六、finetune如何做?

三、原文详细内容

Abstract

信息抽取对不同的抽取目标,有不同的schema
unified text-to-structure generation的方法贡献统一了信息抽取的架构
可同时学习不同源的知识
实现:
prompt,structural schema instructor
大规模的text-to-structure的预训练模型,来学习通用的IE抽取能力实验
成果:
4个IEtask,12种datasets监督学习,low-resource,few-shot数据实体,关系,事件,情感抽取都取得了state-of-the-art的performance

1 introduction

1.1 通用方法缺点:

varying targets:(entity,relation,event,sentiment,etc)
heterogeneous structrues:(spans,triplets,records,etc)
demand-specific schemas现在大多数模型都是task-specialized,不利于学习交叉领域的IE能力
构建specialized任务对于不同的IE task,非常耗时间

1.2 IE是什么

IE:text-to-structure transformations
entity:span structrue
event:schema-defined recordatomic eperations

1.3 如果转化成通用的模型:

spotting:想要抽取的实体词的类型desirable spans,例如人,情感实体等
associating:schemas中的关系类型,例如work forentity extraction:
spotting mention spans of entity typesevent detection:
spotting triggers spans with event typesspotting abilities can be shared between these two tasks
UIE extraction language (SEL) :将不同的抽取任务统一成同一种生成的方式来做。
structural schema instructor (SSI):schema-based prompt mechanism:控制抽取什么实体,什么关系,以及生成什么(what to spot,what to associate,what to generate)

1.4 如何提升通用抽取能力

如何学习通用的抽取能力:在大量的,各式各样的数据集上进行预训练->通用抽取能力更好的适应supervised,
效果:
low-resource,few-shot的任务supervised:提升1.42%,
few-shot或者low-resource setting:带来了巨大的提升。

1.5 contributions:

UIE:同义抽取框架适应不同IE任务,可以联合学习通用的抽取能力设置了unified structure generation network:
通过structural extraction language控制what to spot,which to associate and which to generatea
large-scale text-to-structure pre-trained extraction model

2 UIE Unified Structure Generation for Universal Information Extraction

指导期:structural schema instructor (SSI):schema-based prompt机制
结构化抽取语言:extraction language (SEL): to uniformly encode heterogeneous extraction structures

2.1 atomic operationsspotting(目标信息片段):

实体,事件触发词:Spotting indicates locating target information pieces from the sentence, e.g., the entity and the trigger word in the event.
associating:relation的目标实体,或者事件中的role和argumentAssociating indicates connecting different information pieces based on the desirable associations, e.g., the relation between entity pair or the role between event and its argument(论点).
优点

  1. 统一了IE的encodes方式
  2. 有效表达了抽取的结果,自然可以用于联合抽取
  3. 降低了解码的复杂度
    example实体抽取:(SpotName: InfoSpan)关系抽取&事件抽取:(SpotName: In- foSpan (AssoName: InfoSpan), …)
2.2.1 SSIstructural schema instructor (SSI):s

chema-based prompt机制y = UIE(s + x)s = [s1, …, s|s|] is the structural schema instructor, and y = [y1, …, y|y|] is a SEL sequence that can be easily converted into the extracted information record
example: [spot] person [spot] com- pany [asso] work for [text]作用有效的指导UIE中SEL的生成可以控制which to spot,which to associate,which to generate

2.2.2 Structure Generation with UIE

(s+x) => linearized SELauto-regressive style.
结束位置:eos
yi , hdi = Decoder([H; hd1 , …, hdi−1 ])
可以用BART或者T5等模型

3 pre-training and fine-tuning for UIE

  1. how to pre-train a large-scale UIE model which captures common IE abilities for different IE tasks;
  2. how to adapt UIE to different IE tasks in different settings via quick fine-tuning.
  1. 如何预训练获得通用的抽取能力
  2. 如何进行finetune先大量预料预训练 -> 然后特殊下游人物finetune
3.1 pre-training corpus construction

Dpair = {token sequence x, structured record y}我们通过将 Wikidata 与英语 Wikipedia 对齐来收集大规模的并行文本结构对。 Dpair 用于预训练 UIE 的文本到结构的转换能力。
Drecord is the structure dataset where each in- stance is structured record y. We collect structured records from ConceptNet (Speer et al., 2017) and Wikidata. Drecord is used to pre-train the structure decoding ability of UIE.
Drecord 是结构数据集,其中每个实例都是结构化记录 y。 我们从 ConceptNet (Speer et al., 2017) 和 Wikidata 收集结构化记录。 Drecord用于预训练UIE的结构解码能力。
Dtext is the unstructured text dataset, and we use all plain texts in English Wikipedia. Dtext is used to pre-train the semantic encoding ability of UIE.
Dtext 是非结构化文本数据集,我们使用英文维基百科中的所有纯文本。 Dtext用于预训练UIE的语义编码能力。Dpair: text-to-structure变换能力,
Drecord: 解码能力,Dtext:语义encoding能力3.2 pre-training

  1. Text-to-Structure Pre-training using DpairFor example, person and work for is the positive schema in the record “((person: Steve (work for: Apple)))”, and we sample vehicle and located in as the negative schema to construct meta- schema.这个是在干啥?让他具有啥能力?
  2. Structure Generation Pre-training with Drecord(解码能力).
  3. MLM + span corruption (这个提升比较大)=> 减轻spotname和assoname的灾难性遗忘: catastrophic forgetting of token semantics especially on SPOTNAME and ASSONAME tokens.L = LPair + LRecord + LText
3.3 On-Demand Fine-tuningDtask = {(s,x,y)} -> 交叉熵Rejection Mechanism => 减轻曝光偏差问题exposure biasRM:注入噪音通过RM,UIE能学会拒绝错误生成的NULL的结果

4 Experiments

4.1 dataset

13 IE benchmarks(ACE,CoNLL), 4 well-representative IE tasks
entity extraction, relation extraction, event extraction, structured sentiment extraction
UIE only generates text spans -> finding the first matched offsets -> offsets

4.2 supervised settings

SEL+不加预训练:基本都state-of-the-art了
UIE(带预训练):效果都state-of-the-art了improves 1.42% F1 on average

4.3 Low-resource settingslow-resource:1/5/10-shot, 1/5/10% ratiofew-shot: sample 1/5/10 sentences ofr each entity/relation/event/sentiment type
UIE是User Interface Engineering的缩写,指的是用户界面工程。它是一种用户界面设计方法论,旨在提供用户友好的界面设计,以确保用户在使用产品时能够以简单直观的方式完成操作。 UIE关注用户体验和可用性,提供了一系列的技术和工具来支持用户界面设计。它强调用户研究和数据驱动的设计方法,通过实验、测试和分析用户反馈来改进界面设计。UIE还提供了一些原则和准则,帮助设计师创建易于使用和易于理解的界面。 而Label Studio是一个开源的数据标注工具,用于人工智能模型训练和数据准备。它提供了一个可视化的界面,让用户能够直观地标注和注释数据。标注数据通常用于训练机器学习和深度学习模型,以便模型能够理解和处理各种不同的数据类型。 Label Studio支持多种类型的数据标注,包括图像、文本、时间序列等。它还提供了一些高级功能,如协作标注、主动学习和模型推理。通过使用Label Studio,数据科学家和机器学习工程师能够更高效地处理和标注大量的数据,从而改善模型的性能和准确度。 总的来说,UIE是一个用户界面设计方法论,注重用户体验和可用性;而Label Studio则是一个用于数据标注的工具,用于训练和准备人工智能模型所需的数据。两者在不同的领域中发挥着重要的作用,以提升产品和模型的质量和表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值