激活函数总结(三十):激活函数补充(Logit、Softsign)

激活函数总结(三十):激活函数补充
1 引言
2 激活函数
2.1 Logit激活函数
2.2 Softsign激活函数
3. 总结
1 引言
在前面的文章中已经介绍了介绍了一系列激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PReLU、Swish、ELU、SELU、GELU、Softmax、Softplus、Mish、Maxout、HardSigmoid、HardTanh、Hardswish、HardShrink、SoftShrink、TanhShrink、RReLU、CELU、ReLU6、GLU、SwiGLU、GTU、Bilinear、ReGLU、GEGLU、Softmin、Softmax2d、Logsoftmax、Identity、LogSigmoid、Bent Identity、Absolute、Bipolar、Bipolar Sigmoid、Sinusoid、Cosine、Arcsinh、Arccosh、Arctanh、LeCun Tanh、TanhExp、Gaussian 、GCU、ASU、SQU、NCU、DSU、SSU、SReLU、BReLU、PELU、Phish、RBF、SQ-RBF、ISRU、ISRLU、SQNL、PLU、APL、Inverse Cubic、Soft Exponential、ParametricLinear、Piecewise Linear Unit、CLL、SquaredReLU、ModReLU、CosReLU、SinReLU、Probit、Smish、Multiquadratic、InvMultiquadratic、PSmish、ESwish、CoLU、ShiftedSoftPlus)。在这篇文章中,会接着上文提到的众多激活函数继续进行介绍,给大家带来更多不常见的激活函数的介绍。这里放一张激活函数的机理图:


2 激活函数
2.1 Logit激活函数
Logit 函数在输入值 x 介于 −∞和 1之间时是定义良好的。然而,需要注意的是,当 x=1 时,分母为零,这会导致函数无法计算。因此,这个激活函数在应用中需要小心处理,确保避免将输入设置为 1。其数学表达式和数学图像分别如下所示:
f ( x ) = x 1 − x f(x)=\frac{x}{1-x}
f(x)= 
1−x
x


优点:

非线性性质: 这个激活函数是非线性的,可以帮助神经网络模型捕捉数据中的复杂模式和关系。

简单性: 这个函数的数学形式相对简单,只涉及除法和线性操作。

不对称性: 这个函数的输出值范围是 (−∞,1),因此它在不同于其他常见激活函数(如 Sigmoid 和 Tanh)的范围内产生输出。

缺点:

存在无定义区域: 当 x=1 时,分母为零,函数无法计算。这意味着这个激活函数的应用需要注意避免将输入设置为 1。
不对称性: 这个函数的输出范围是 (−∞,1),因此在某些情况下,不对称的输出范围可能会引入一些问题。
导数的问题: 这个函数的导数存在问题,尤其是在接近 x=1 的情况下,导数可能变得非常大,可能会导致数值不稳定性。
虽然该激活函数比较简单,但是因为其特性很少在当前使用。。。。。

2.2 Softsign激活函数
Softsign 激活函数是一种平滑的非线性函数,类似于双曲正切(tanh)激活函数,但具有在输入接近零时的更大斜率。它将实数映射到 [-1, 1] 范围内,同时保留了输入的符号信息。其数学表达式和数学图像分别如下所示:
f ( x ) = x 1 + ∣ x ∣ f(x)=\frac{x}{1+∣x∣}
f(x)= 
1+∣x∣
x


优点:

平滑性: Softsign 激活函数是平滑的,具有连续可微性,对于优化算法和训练过程有益。
非线性特性: 它引入了非线性,允许神经网络捕获数据中的复杂模式。
可导性: Softsign 在除了零点外都是可导的,这对于梯度下降等优化算法的训练很重要。
缺点:

输出范围: Softsign 激活函数将输入映射到 [-1, 1] 范围内,可能不适用于所有问题,特别是需要输出范围在 [0, 1] 或其他不同范围的情况。
梯度消失问题: 在输入接近零的时候,Softsign 的斜率变得非常大,这可能导致梯度消失问题,特别是在深层网络中。
虽然该激活函数比较简单,但是因为其特性很少在当前使用。。。。。

3. 总结
到此,使用 激活函数总结(三十) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的激活函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/qq_36758270/article/details/132515450

logit函数是一种用于执行逻辑回归分析的函数,主要用于估计二元因变量与一个或多个自变量之间的关系。在Python中,logit函数可以使用statsmodels模块中的api或formula.api来调用。 使用api调用时,可以使用以下代码: ``` import statsmodels.api as*** from patsy import dmatrices # 定义自变量和因变量 y, X = dmatrices('Survived ~ Class + Sex + Age', data=titanic, return_type='dataframe') # 创建logit模型 logit_model =***.Logit(y, X) # 拟合模型并打印结果摘要 results = logit_model.fit() print(results.summary()) ``` 使用formula.api调用时,可以使用以下代码: ``` import statsmodels.formula.api as***f # 将Survived列转换为0和1 titanic['Survived'] = (titanic['Survived'] == 'Yes').astype(int) # 创建logit模型 logit_model =***f.logit(formula='Survived ~ Class + Sex + Age', data=titanic) # 拟合模型并打印结果摘要 results = logit_model.fit() print(results.summary()) ``` 通过调用logit函数,可以进行逻辑回归分析并观察自变量与因变量之间的关系。结果摘要将提供有关模型拟合度、系数、标准误差、p值等统计信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【Python计量】Logit模型](https://blog.csdn.net/mfsdmlove/article/details/126468606)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值