RDKit | 基于神经网络的溶解度预测和回归分析

本文探讨了如何运用神经网络进行化合物溶解度的预测,详细介绍了神经网络的组成部分,如神经元、连接、偏置和激活函数等,并提到了训练过程中的反向传播、学习率和正则化等概念。此外,还讨论了化学信息学中的RDKit库在预测模型中的应用。
摘要由CSDN通过智能技术生成

人工智能是一个主题,尝试使用神经网络作为模型建立化合物物理性质的预测模型。机器学习库是由Google开发和使用的TensorFlow。Keras是一个使TensorFlow的神经网络功能更易于使用的软件包。

<数据集文件见:https://download.csdn.net/download/u012325865/10670205>

神经网络

神经元

        神经元是神经网络的基本单位。它获得一定数量的输入和一个偏置值。当信号(值)到达时会乘以一个权值。如果神经元有4个输入,那么就有4个权值,权重可以在训练时调整。

 

连接

       将一个神经元连接到另一层或同一层的另一个神经元。连接伴随着与之相关联的权值。训练的目标是更新此权值以减少损失(即错误)。

偏置(偏移)

       它是神

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值