课程笔记
动手是深度学习中最为重要的部分,能够极快的提高自己的能力。但是每个人的水平是有上限的,并不能对方方面面的问题都有深刻的认识。因此,站在巨人的肩膀上就非常的有意义,openMMLab刚好就担任了这个角色,其中包含了大量SOTA算法的优雅实现,无论是在学术还是工程上都有非常高的价值。
虽然之前就已经简单用过openMMLab,但是当时只是浅尝辄止。这次乘着实战营的机会,我尽量督促自己完成对应的课程和实验,提高对openMMLab的理解。
在接下来一段时间里,我会在每次课程中都发布对应的博文,记录相应的笔记。
OpenMMLab简介
openMMlab是基于pytorch的工具包,不是一个新的框架。
OpenMMLab框架
OpenMMLab由底层基础库MMCV和MMEngine组成,实现了一些基础算法;再次基础上还包含一系列视觉相关的任务的工具包,例如语义分割、目标检测、光流估计等等;最后还包含一些模型部署相关的工具。
实战营简介
参与课程可以动手做一些实验,完成课程后还有一些福利。
课程安排
课程安排还挺紧凑的。
作业提交
与其他在线课程不同,实战营有严格的做作业要求,不完成作业会被踢出群,可以督促参与。