三篇序列推荐综述

stamp_Short-Term Attention Memory Priority Model for Session-based Recommendation(STMP)

摘要:大多的序列推荐没有考虑用户当前操作对下一时刻点击的作用。并且长期记忆模型对于长会话的建模往往由于用户的兴趣漂移使得无法对长期会话进行建模。
所以:提出了一种新的短期注意/记忆优先模型,该模型能够从会话上下文的长期记忆中获取用户的一般兴趣,同时考虑到用户当前的兴趣来自于最后一次点击的短期记忆。
(实际上就是对某一个session进行长短期的划分,短期记忆即最后一次的点击单独拿出来)
论文框架:
在这里插入图片描述
整体的思路就是:将所有用户的会话进行统一处理,模型每次输入的一个会话(由item按照时间戳排序的list),通过分别计算 [ x 1 . . . x t − 1 ] [x_1...x_{t-1}] [x1...xt1]对应的长期记忆向量以及 x t x_t xt对应的短期向量。
存在的缺陷:模型最后的Trilinear Composition层输入的是所有item的一个向量,当item的数量很大时,模型的运行速度会很慢。
而且,对于session的划分,对于不同的场景,如何按照合适的时间间隔进行划分才是合理的。

Sequential Recommender System based on Hierarchical Attention Network(SHAN)

摘要:结合用户的一般偏好和近期需求综合建模。现存在的方法:忽略了用户长期偏好随时间的推移而动态变化,往往采用静态特征对用户进行长期偏好进行建模。它们通过线性方式集成用户-项或项-项交互,从而限制了模型的能力。
所以:本文提出双层注意力网络对用户兴趣进行长短期相结合的方法进行综合建模。第一层注意力层主要是获取用户的长期兴趣偏好,第二层通过结合用户长期向量和短期向量继续进行注意力机制的操作,进而进行推荐。
论文框架:
在这里插入图片描述
整体的思路:数据的输入不像stamp里面的一个session,而是整个用户在某个时间段内的行为序列,即是由session组成的序列。并且加入了user的embedding,作为attention的query,比stamp更能做到个性化的兴趣建模,但是对于不同的场景,时间间隔的选取会对模型的预测结果有很大的影响。同时,不同的场景对短期兴趣单独采用attention建模的时候效果会被使用双层建模的效果好。(可能与数据集本身存在的原因有关系)

Next Item Recommendation with Self-Attention

摘要:本文提出了一种新的序列感知推荐模型。我们的模型利用自注意力机制从用户的历史交互中推断出项目与项目之间的关系。通过自注意力的计算,它能够估计出用户交互轨迹中每一项的相对权重,从而更好地表达用户的实时兴趣。模型最终在一个度量学习(概率性的计算加和)框架中进行训练,同时考虑短期和长期目标。
论文框架:
在这里插入图片描述
整体思路:主要是利用self-attention进行短期和长期用户向量的建模,最后利用度量学习(相似度的度量),通过给长期偏好和短期偏好向量进行不同概率的分布进行建模。

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值