【机器学习】【图像处理】图像识别必备基础:图像压缩以及图像的二值化处理

本文介绍了图像处理中的二值化处理,用于将多维特征转化为二维特征,便于计算机识别。通过KNN算法识别手写数字的例子,解释了二值化处理的重要性。同时,讲述了图像的等比例缩小过程,以统一样本集图片大小。最后,提供了图像压缩和二值化处理的代码及效果展示。
摘要由CSDN通过智能技术生成

1.为什么要对图像进行二值化处理

前面在使用KNN算法识别手写数字的系统中,使用的样本集(训练样本集+测试样本集)都是txt文件,里面存储的是1或0的数值,就是说我们用二维特征来表示手写数字图片信息,这样方便我们进行模式识别。这个二维特征txt文件就可以通过本章的图像二值化处理后得到。

对图像进行二值化处理,可以将多维特征转换为容易处理的二维特征,使用KNN或神经网络等方法进行学习,从而使计算机识别出正确的数字。

如前面KNN算法识别手写数字图片中数字的二值化处理后的txt文件:

00000000000001100000000000000000 
00000000000011111100000000000000 
00000000000111111111000000000000 
00000000011111111111000000000000 
00000001111111111111100000000000 
00000000111111100011110000000000 
00000001111110000001110000000000 
00000001111110000001110000000000 
00000011111100000001110000000000 
00000011111100000001111000000000 
00000011111100000000011100000000 
00000011111100000000011100000000 
00000011111000000000001110000000 
00000011111000000000001110000000 
00000001111100000000000111000000 
00000001111100000000000111000000 
00000001111100000000000111000000 
00000011111000000000000111000000 
00000011111000000000000111000000 
00000000111100000000000011100000 
00000000111100000000000111100000 
00000000111100000000000111100000 
00000000111100000000001111100000 
00000000011110000000000111110000 
00000000011111000000001111100000 
00000000011111000000011111100000 
00000000011111000000111111000000 
00000000011111100011111111000000 
00000000000111111111111110000000 
00000000000111111111111100000000 
00000000000011111111110000000000 
00000000000000111110000000000000

2.手写数字图片资源

下面是自己手写的一个6数字图片,作为本次图片压缩的源图片,以及压缩后再进行二值化处理的使用图片。


3.图像的等比例缩小

当样本集的源图片的大小不一样时,对应后面的算法操作很是不便。所以要统一样本集中所有源图片的大小。比如对于手写数字图片,可以都压缩为32*32。

3.1图像压缩代码

# -*- coding: utf-8 -*-
""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值