【机器学习】判别模型和生成模型

本文探讨了机器学习中的判别模型和生成模型。判别模型如SVM直接预测条件概率P(y|x),而生成模型如朴素贝叶斯通过学习联合概率P(x,y)进行分类。生成模型更具普适性,但判别模型更直接、简单。在实际应用中,两者各有优势,并常有交叉结合。" 117483370,10293304,Android 证书验证机制详解,"['Android开发', '安全', '证书管理']
摘要由CSDN通过智能技术生成

判别式模型,就是只有一个模型,你把测试用例往里面一丢,label就出来了,如SVM。生成式模型,有多个模型(一般有多少类就有多少个),你得把测试用例分别丢到各个模型里面,最后比较其结果,选择最优的作为label,如朴素贝叶斯。

 

一、生成式模型
朴素贝叶斯
K近邻(KNN)
混合高斯模型
隐马尔科夫模型(HMM)
贝叶斯网络
Sigmoid Belief Networks
马尔科夫随机场(Markov Random Fields)
深度信念网络(DBN)
二、判别式模型
线性回归(Linear Regression)
逻辑斯蒂回归(Logistic Regression)
神经网络(NN)
支持向量机(SVM)
高斯过程(Gaussian Process)
条件随机场(CRF)
CART(Classification and Regression Tree)

 

 

【模型范例】
假设你现在有一个分类问题,x是特征,y是类标记。用生成模型学习一个联合概率分布P(x,y),而用判别模型学习一个条件概率分布P(y|x)。用一个简单的例子来说明这个这个问题。假设x就是两个(1或2),y有两类(0或1),有如下如下样本(1,0)、(1,0)、(1,1)、(2,1)
则 学习到的联合概率分布(生成模型)如下:


<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值