数据分析—用excel2016和python画箱线图

本文介绍了箱线图(Boxplot)的概念及其在数据分析中的作用,详细讲解了如何使用Excel2016和Python分别绘制箱线图,包括Excel2016的直接插入功能以及Python绘制箱线图的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。

一.用excel画箱线图

Excel2016版可以直接画箱线图:插入-->箱线图(but:2016不能调分两类间距,体检不是很好

### Python 中使用 Pandas Matplotlib 导入数据并绘制箱线图 为了在 Python 中导入数据以绘制箱线图,可以利用 `pandas` 库来处理数据,并通过 `matplotlib` 或者更高级的绘图库如 `seaborn` 来创建图形。下面展示了一个具体的例子,说明如何从 CSV 文件中加载数据,并将其转换成适合用于绘制箱线图的形式。 #### 使用 Pandas 读取 CSV 文件中的数据 首先安装必要的包(如果尚未安装),可以通过 pip 安装命令完成: ```bash pip install pandas matplotlib seaborn ``` 接着,在脚本里引入所需的模块,并指定路径去读取本地存储的数据文件。这里假设有一个名为 "data.csv" 的文件位于当前工作目录下: ```python import pandas as pd df = pd.read_csv('data.csv') print(df.head()) # 查看前几行数据以便理解其结构 ``` 对于给定的例子,由于数据被转置了,因此需要调整 DataFrame 的方向使其适应标准格式,即每一列表示一组观测值而不是默认情况下的一列代表多个特征的情况: ```python # 转置原始数据框使得每列为一个班级的成绩分布 transposed_df = df.T ``` #### 配置图表样式与参数设置 为了让生成的图表更加美观易懂,还可以自定义一些显示选项,比如更改字体、字号等: ```python import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # 解决负号'-'显示为方块的问题 plt.rc('font', size=16) ``` #### 创建箱形图 最后一步就是调用 `boxplot()` 方法来实际箱型图,并传入相应的标签其他配置项: ```python fig, ax = plt.subplots() ax.boxplot(transposed_df.values) # 添加标题轴标签 ax.set_title('两个班级成绩对比') ax.set_xlabel('班级') ax.set_ylabel('分数') # 自定义X轴刻度标签 ax.set_xticklabels(['甲班', '乙班']) plt.tight_layout() plt.show() ``` 上述过程涵盖了从准备环境到最终呈现可视化结果的所有必要步骤[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值