热门文生图模型
Kolors
Kolors: Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis
解决问题:
中文文生图能力,进一步提升文生图质量
解决思路:
- 替换textencode模块为ChatGLM3-6B-Base,支持中文输入,并提升复杂文本理解能力
- 使用两阶段训练策略,先用大批量数据训练提升模型泛化性,再用小批量高清高质数据训练提升生成质量,第二阶段将加噪次数增加到1100次,通过修改加噪策略,保证前1000次和sd的策略一致,这样做的好处是可以直接在开源模型上进行二阶段finetune
- 模型生成模块采用sd xl的unet
InstructPix2Pix
InstructPix2Pix: Learning to Follow Image Editing Instructions
解决问题:
如何直接使用prompt更改图像内容,并且保持图像剩余内容不变
解决思路:
创新点:
- 使用GPT-3生成更改instruction及更改后的caption,并用prompt-to-prompt算法生成更改前后的caption对应的图像,并利用clip模型计算两图相似性进行过滤挑选,从而保持图像内容的持续性,即剩余内容不变,最终构建训练集
- 基于SD模型,SD接受更改instruction为prompt,输入部分增加原图图片,并修改classify free,以支持原始图片及prompt两个条件
数据构建
修改的classify free