在生成式 AI 应用中,模型生成的内容质量直接影响用户体验。然而,生成式模型存在一定风险,如幻觉(Hallucination)问题——生成不准确或完全虚构的内容。因此,在构建生成式 AI 应用时,模型评估与质量控制是必不可少的环节。
本文将介绍如何评估生成式 AI 模型的输出质量,并采用有效的技术手段,保护应用免受幻觉等问题的影响。
1. 为什么需要模型评估与质量控制?
- 保障输出准确性:
- 模型可能生成不符合事实的内容,尤其在涉及关键领域(如法律、医疗)时。
- 提升用户信任:
- 不准确的输出会导致用户对系统的信任下降。
- 优化模型性能:
- 通过持续评估与反馈机制,不断优化生成模型。
- 减少风险:
- 防止生成有害内容、不符合政策或存在偏见的输出。
2. 模型评估的核心指标
模型评估需要量化生成内容的质量。以下是常用的评估指标:
2.1 自动评估指标
- BLEU(Bilingual Evaluation Understudy):
- 用于评估生成内容与参考答案的相似度,常用于机器翻译。
- ROUGE(Recall-Oriented Understudy for Gisting Evaluation):
- 用于评估文本摘要,衡量生成文本与参考文本的重叠度。
- Perplexity(困惑度):
- 衡量生成模型的语言流畅性,越低越好。
2.2 人工评估指标
- 内容准确性:
- 生成内容是否与事实一致。
- 上下文相关性:
- 输出是否与输入上下文紧密相关。
- 语言流畅性:
- 输出是否自然且易于理解。
- 道德与政策符合性:
- 内容是否符合社会道德规范和企业政策。
3. 防护幻觉问题的技术手段
3.1 增强模型的上下文理解
幻觉问题常因模型对上下文理解不足导致,可以通过以下方式增强模型能力:
- 检索增强生成(RAG):
- 在生成回答前,检索相关文档并将其作为上下文,减少错误信息。
- 扩展上下文窗口:
- 提供更多的上下文信息,让模型更全面地理解问题。
3.2 输出内容验证
通过二次检查机制对生成内容进行验证。
- 事实验证:
- 调用外部知识库或 API 验证生成内容的准确性。
- 规则验证:
- 定义规则,过滤不符合要求的输出(如敏感词检测)。
3.3 限制生成范围
- 任务专用模型:
- 使用针对特定任务训练的模型,限制生成内容的范围。
- 模板生成:
- 结合预定义模板生成回答,确保输出符合预期。
4. 基于 Spring AI 的模型评估与质量控制方案
4.1 评估框架设计
通过 Spring AI 实现一个评估与控制系统,分为以下核心模块:
- 内容生成模块:生成模型的输出内容。
- 评估模块:自动或人工评估生成内容。
- 验证模块:对生成内容进行事实验证与规则过滤。
- 反馈模块:记录评估结果,用于模型优化。
4.2 核心代码实现
内容生成模块
负责生成模型的输出。
import org.springframework.stereotype.Service;
@Service
public class ContentGenerationService {
private final CustomAIModelManager modelManager;