SLIC segmentation algorithm

SLIC算法通过结合像素的颜色和位置信息进行超像素分割。首先以特定间隔初始化簇中心,接着根据像素梯度调整簇中心位置。然后在循环中,依据像素颜色和空间距离度量分配像素至相应簇,并更新簇中心,直至达到预设的误差阈值。最后,执行相似区域的连接操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、我们用一个5维的向量[l,a,b,x,y]来表示每一个像素,[l,a,b]为像素颜色向量,[x,y]为像素位置,然后我们根据像素的颜色相似度及距离来产生超像素。上图step1中,以网格间隔为s(s=sqrt(N/K))初始化了K个簇中心;

2、在n*n的区域里,计算出最小梯度位置,将簇中心移至到这个位置;

梯度计算:

                   

I(x,y)是(x,y)位置的像素的[l,a,b]向量,||.||是L2范式;

3、循环执行下面步骤知道E(剩余误差)<某个阈值:

对于每个簇中心Ck,在2s*2s的区域内,根据下面式子的距离度量,将最合适的像素分配到此簇中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值