浙大pat | 牛客网甲级 1038 Counting Ones (30)数论题

题目描述

The task is simple: given any positive integer N, you aresupposed to count the total number of 1's in the decimal form of the integersfrom 1 to N.  For example, given N being12, there are five 1's in 1, 10, 11, and 12.



输入描述:

Each input file contains one test case which gives the positiveN (<=230).




输出描述:

For each test case, print the number of 1's in one line.



输入例子:

12



输出例子:

5

这题虽然题面看起来很简单,但是,技巧性特别强,

首先遍历1到n所有的数肯定超时,

后来我考虑将a1a2a3a4类似这样的数划分为a1000 a200 a30 a4,这四个区间,然后分别求这四个区间里面的1的个数,这样虽然时间快,但是代码太复杂了,且容易出错

后来我又想,对于a1a2a3a4而言,a3位置上的1的个数不是只和a1a2,a4这两个数有关吗,比如1234,十位上的1的个数就为(12+1)*(10),因此就能够得到规律

把数拆分为left,mid,right三部分,

当mid>1的时候,mid位置上的1的个数为(left+1)*(10^len(right))

当mid ==1 的时候,为(left)*(10^len(right))+right+ 1

当mid == 0 的时候,为(left)*(10^len(right))

Len(right)为right这个数的长度

使用stringstream来实现int和string的转换

Stringstream ss;

Ss<<int;

ss>>string;

或者是
Stringstream ss;

Ss<< string;

ss>>int;

当编译器不支持long long类型的时候,需要使用_int64类型,当时交上去的代码需要使用long long类型

输出long long 类型需要printf(“%lld”,a)需要stdio.h头文件


#include <stdio.h>
#include <iostream>
#include <math.h>
#include <string>
#include <sstream>

using namespace std;

int main()
{
	int N;
	string Ntmp;
	__int64 theOneCount=0;
	int leftNum,midNum,rightNum;
	
	cin>>N;
    stringstream ss;
	ss << N;
	ss >> Ntmp;
	for(int i=0;i<(int)Ntmp.size();i++)
	{
		leftNum = atoi(Ntmp.substr(0,i-0).c_str());
		midNum = Ntmp[i]-'0';
		rightNum = atoi(Ntmp.substr(i+1,Ntmp.size()-(i+1)).c_str());

		if(midNum>1)
		{
			theOneCount+=pow(10,Ntmp.size()- (i+1))*(leftNum+1);
		}
		else if(midNum == 1)
		{
				theOneCount+=(pow(10,Ntmp.size()- (i+1)))*(leftNum) + rightNum + 1;
		}
		else
		{
			theOneCount+=(pow(10,Ntmp.size()- (i+1)))*(leftNum);
		}
	}
	printf("%lld", theOneCount);
	return 0;
}

题目简述: 给定一个整n,你需要求出1到n这n个整的二进制(binary)表示中1出现的次。例如,对于n=3133个整的二进制表示分别是:1, 10, 11,其中1出现的次2次。因此,输出2即可。 题目思路: 这道题可以用暴力求解法:枚举1到n的每个整,然后统计对应的二进制表示中1的个即可。但此种做法不适用于大据。因此,我们需要寻找更为高效的算法。其中一种常见方法是用每一位的字来计算。 例如,对于一个二进制11010,我们可以从低到高,第一位统计在0~1范围内出现的次,第二位统计在0~3范围内出现的次,第三位在0~7范围内,第四位在0~15范围内,最后统计总体中的1的个。因为,我们可以发现,对于n的第i位上的字,它出现1的次由(n / (i*10) * i)1,除去i-1位之后,如果大于2,则还要加上i个1。再来看一个具体的例子,对于11010,第一位上有10种情况,0出现5次,1也出现5次,对于第二位,共有110, 101, 100, 011, 010, 001, 000七种情况,其中从00到01这两种情况中,每个字都出现了两次1,因此一共出现了2*2=4次1。同样地,对于 101 和 011 这两种情况,也是如此。 因此,最终代码如下(基于C++): #include <iostream> using namespace std; #define int long long//避免溢出 signed main(){ int n, ans; cin >> n; for(int l = 1, r; l <= n; l = r + 1){ int k = n / l; r = n / k; ans += (r - l + 1) * (k / 10); int t = (k % 10) * l; if(t >= l) ans += t - l + 1; } cout << ans << endl; return 0; } 注意:本题的据范围比较大,因此需要使用int long long类型避免溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值