谷歌发布史上最大「机器人、视觉和语言“通才”」模型:PaLM-E 562B

谷歌发布史上最大「机器人、视觉和语言“通才”」模型PaLM-E 562B

2021年,谷歌曾发表一篇文章,阐述了一种名为 Pathways 的下一代 AI 架构。通过 Pathways 架构,只需训练一个 AI 模型就可以处理上千万种不同的任务。

2022年4月,谷歌发布了一个基于 Pathways 架构的、拥有 5400亿参数的Transformer语言模型,并将之命名为 PaLM,即 Pathways Language Model。

那么,PaLM表现如何?
传送门:谷歌PaLM教AI懂幽默…
当时,在标准任务上,PaLM几乎在所有情况下都比以前的大型机型做得更好。而在高难度的任务上,PaLM实现了突破性的能力。因得益于“思维提示链”策略,在有关推理能力的测评中,PaLM 尤其是在处理算术和常识推理的任务中展现出了令人难以置信的性能。在有关解释生成的测评中,PaLM 向我们证明了它的卓越能力,甚至成功地解释了一些笑话。

2023年3月6日,Robotics at Google、柏林工业大学和 Google Research 团队提出了一个具身多模态语言模型 PaLM-E,通过 PaLM-540B 语言模型与 ViT-22B 视觉Transformer模型相结合,足足有5620亿参数,可以称之为「史上最大视觉语言模型(VLM)」,无需特殊训练就可执行各种任务。PaLM-E 不仅可以理解图像,还能理解、生成语言,而且竟然还能将两者结合起来,处理复杂的机器人指令。

相关研究论文以“PaLM-E: An Embodied Multimodal Language Model”为题,已发表在预印本网站 arXiv 上。

在这里插入图片描述

论文:PaLM-E: An Embodied Multimodal Language Model
机构:Robotics at Google,柏林工业大学,Google Research
作者:Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, et al
论文地址:https://arxiv.org/abs/2303.03378
GitHub地址:https://palm-e.github.io/

据论文描述,PaLM-E 是一个 decoder-only 的 LLM,在给定前缀(prefix)或提示(prompt)的情况下,以自回归方式生成文本补全,其训练数据为包含视觉、连续状态估计和文本输入编码的多模式语句。

PaLM-E 可以在多样化的实施方案中解决各种具身推理任务,且能够进行跨互联网规模的语言、视觉和视觉-语言域的多样化联合训练。

机器人、视觉-语言领域的「通才」模型

PaLM-E,全称Pathways Language Model with Embodied,是一种具身视觉语言模型。被称为“PaLM- E”,因为它基于谷歌现有的称为“PaLM”的大型语言模型(LLM)。谷歌通过添加感官信息和机器人控制,使PaLM“具体化”。

由于PaLM-E基于语言模型,它采用连续的观测数据,如图像或传感器数据,并将它们编码为与语言标记大小相同的向量序列。这使得模型能够以处理语言的方式“理解”感官信息。

在这里插入图片描述

实验展示:人机交互

在项目的demo中,研究团队展示了 PaLM-E 如何在两个不同的现实具身上规划和执行长跨度任务,如“把抽屉里的米片拿给我”,“给我拿一颗绿星”等。

当发出一个高级命令,比如“把抽屉里的玉米片拿给我”时,PaLM-E 可以为一个带有手臂的移动机器人平台生成行动计划(由Google Robotics开发),并自行执行这些行动。
在这里插入图片描述

图注:发出一个高级命令:“把抽屉里的玉米片拿给我”
demo 1

PaLM-E 562B demo 1

图注:发出一个高级命令:“给我拿一颗绿星”

PaLM-E 也可以根据视觉和语言输入完成一项多阶段的规划,如控制桌面机器人将黄色六边形移到绿色星星上、把绿色块推到乌龟旁边、把红色块推到咖啡杯处。
demo 2

实验展示:视觉-语言生成

在这里插入图片描述

除了释放机器人规划的新能力外,PaLM-E 也是一个视觉-语言模型,可以将一个或多个图像作为提示,从而生成描述性文字。

在这里插入图片描述

图注:问:左边的球员在他的职业生涯中共赢得了多少枚总冠军戒指?请逐步地思考。答:1.左边的(球员)是科比-布莱恩特。2.科比-布莱恩特已经赢得了 5 枚总冠军戒指。(来源:GitHub)

在零样本推理方面,PaLM-E 可以在给定图像的情况下讲述笑话,并展示了包括感知,基于视觉的对话和计划在内的能力。

在这里插入图片描述

PaLM-E是一个通用的、迁移学习的、多具身决策代理

除了机器人技术,因为使用大型语言模型作为PaLM-E的核心,它表现出“正迁移”。这意味着它可以将从一项任务中学到的知识和技能转移到另一项任务中,与单任务机器人模型相比,它的“性能显著提高”。
在这里插入图片描述

其次,研究者还观察到一个模型规模的趋势:“语言模型越大,在进行视觉语言和机器人任务训练时,它就越能保持语言能力–从数量上讲,562B PaLM-E 模型几乎保留了所有的语言能力。”

在这里插入图片描述

PaLM-E是迄今为止报道的最大的VLM,它还表现出诸多新的能力,如多模态思维链推理(CoT),少样本提示和多图像推理。尽管只在单个图像进行训练,但PaLM-E在OK-VQA基准上取得了新的SOTA。

在这里插入图片描述

该研究证明,通过将具身数据混合到多模态大型语言模型的训练中,可以训练出一个通用的、迁移学习的、多具身决策代理。随着深度学习模型随时间的推移变得越来越复杂,PaLM-E应该会有更惊人的表现。

欢迎各位关注我的个人公众号:HsuDan,我将分享更多自己的学习心得、避坑总结、面试经验、AI最新技术资讯。

<think>嗯,用户让我介绍一下大语言模型的微调技术原理教程,用中文回答。首先,我需要确定用户的基础知识水平,可能他们已经有了一些关于大语言模型的基本了解,比如知道预训练模型如GPT、BERT这些,但想深入了解如何微调。不过也有可能用户是刚开始接触,需要从基础讲起。所以,我应该先简明扼要地解释微调是什么,然后再深入原理步骤。 接下来,微调的原理部分需要涵盖预训练微调的区别。预训练是在大规模数据上进行的自监督学习,而微调是针对特定任务的有监督学习。这部分可能需要用一些类比,比如预训练像是学习语言的基础,微调则是专注于某个技能,比如翻译或分类。然后,参数调整方面,可以分全参数微调高效微调方法,比如LoRA、Adapter这些,这些方法现在比较流行,尤其是资源有限的情况下,用户可能更关心如何高效微调。 然后,教程部分需要分步骤,比如准备数据、选择模型、配置环境、微调方法选择、训练评估。每一步要具体,比如数据格式、预处理,模型的选择如Hugging Face库的使用,环境配置需要哪些工具,如PyTorch。微调方法部分可能需要简要介绍不同方法,比如LoRA的原理,以及为什么选择它。训练过程中的关键参数,如学习率、批次大小,还有过拟合问题需要提醒。评估部分要强调测试集的重要性,以及如何保存模型。 可能用户的实际需求是想要自己动手微调一个模型,所以需要提供代码示例。但代码是否必要?如果用户是开发者,可能需要代码;如果是初学者,可能更关注流程。不过用户明确提到要教程,所以应该包括代码片段,比如使用Hugging Face的Trainer类,或者给出LoRA的示例。但要注意不要太复杂,保持简洁。 还要考虑用户可能遇到的常见问题,比如数据不足怎么办,计算资源不够怎么办,这时候可能需要建议他们使用高效微调方法或者数据增强。此外,过拟合也是一个常见问题,所以早停法正则化需要提到。 后,参考资料部分,推荐Hugging Face文档、LoRA论文等,方便用户进一步学习。总结部分要简明,强调微调的重要性,以及不同方法的应用场景。 需要确保整个回答结构清晰,从原理到步骤,再到示例,逐步深入。语言要通俗易懂,避免过多专业术语,或在必要时解释术语。比如,LoRA可以简单解释为低秩适配器,减少可训练参数。同时,检查是否有遗漏的关键点,比如不同的微调方法比较,或者实际应用中的注意事项。</think>好的!以下是对大语言模型(LLM)微调技术原理教程的清晰介绍,分模块整理: --- ### **一、大语言模型微调的原理** #### 1. **什么是微调(Fine-tuning)?** - **核心思想**:在预训练模型(如GPT、LLaMA、BERT)的基础上,通过少量领域/任务相关的数据调整模型参数,使其适应特定任务(如问答、翻译、分类等)。 - **类比**:预训练模型像是一个“通才”,微调则是将其训练成某个领域的“专家”。 #### 2. **预训练 vs 微调** - **预训练**: - **目标**:学习通用语言表示(如语法、语义)。 - **数据**:海量无标签文本(如书籍、网页)。 - **方法**:自监督学习(如掩码预测、下一句预测)。 - **微调**: - **目标**:针对特定任务优化模型- **数据**:少量有标签/结构化数据(如标注的问答对)。 - **方法**:监督学习(用任务相关的损失函数调整参数)。 #### 3. **参数调整策略** - **全参数微调**:更新模型所有参数,效果好但资源消耗大(需GPU显存)。 - **高效微调**(主流方法): - **LoRA**(低秩适配器):仅训练低秩矩阵,冻结原始参数。 - **Adapter**:在模型层间插入小型网络模块。 - **Prompt Tuning**:调整输入提示词的嵌入表示。 - **QLoRA**:量化+LoRA,进一步降低显存需求。 --- ### **二、微调教程(以Hugging Face为例)** #### 1. **准备数据** - **数据格式**:文本对(如`{"input": "问题", "output": "答案"}`)或单文本(如分类标签)。 - **预处理**:分词、截断、填充(需与模型匹配,如BERT用`[CLS]`/`[SEP]`)。 - **工具**:Hugging Face `datasets` 库。 #### 2. **选择模型** - 从Hugging Face Hub加载预训练模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b") ``` #### 3. **配置微调方法(以LoRA为例)** - 使用`peft`库添加LoRA适配器: ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, # 低秩矩阵的维度 lora_alpha=32, target_modules=["q_proj", "v_proj"], # 针对LLaMA的注意力层 lora_dropout=0.1, ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # 查看可训练参数量(通常<1%) ``` #### 4. **训练配置** - 使用`Trainer`类: ```python from transformers import TrainingArguments, Trainer training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=4, gradient_accumulation_steps=8, # 解决显存不足 learning_rate=2e-5, num_train_epochs=3, fp16=True, # 混合精度训练(节省显存) ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, data_collator=lambda data: {"input_ids": tokenize(data["input"])}, ) trainer.train() ``` #### 5. **评估与保存** - **评估**:在测试集上计算准确率、BLEU等指标。 - **保存模型**: ```python model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") ``` --- ### **三、关键注意事项** 1. **数据质量**:微调数据需与目标任务高度相关,建议500-1000条以上。 2. **过拟合**:使用早停法(Early Stopping)、正则化(如权重衰减)。 3. **计算资源**: - 全参数微调需高端GPU(如A100),高效微调可在消费级显卡(如RTX 3090)运行。 - 使用`bitsandbytes`库可实现8/4比特量化训练。 --- ### **四、常见问题** - **Q:没有标注数据怎么办?** A:使用无监督数据生成(如用GPT-4合成训练数据)。 - **Q:微调后模型“忘记”原有知识?** A:控制学习率不宜过高,或混合通用数据与任务数据联合训练。 --- ### **五、扩展学习** - **工具推荐**: - Hugging Face Transformers库:https://huggingface.co/docs - PEFT(高效微调库):https://github.com/huggingface/peft - **论文**: - LoRA:https://arxiv.org/abs/2106.09685 - QLoRA:https://arxiv.org/abs/2305.14314 --- 通过以上步骤,你可以针对具体任务(如客服问答、法律文本生成)定制自己的语言模型。实际应用中需根据任务特点调整数据训练参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值