分布式机器学习:PageRank算法的并行化实现(PySpark)

这篇博客介绍了PageRank的串行迭代算法,并探讨了图的边划分和点划分方法,重点在于如何使用PySpark实现PageRank的并行化计算。通过编程实例展示了在分布式环境中并行计算PageRank的有效性。
摘要由CSDN通过智能技术生成

🚀 优质资源分享 🚀

学习路线指引(点击解锁) 知识定位 人群定位
🧡 Python实战微信订餐小程序 🧡 进阶级 本课程是python flask+微信小程序的完美结合,从项目搭建到腾讯云部署上线,打造一个全栈订餐系统。
💛Python量化交易实战💛 入门级 手把手带你打造一个易扩展、更安全、效率更高的量化交易系统

1. PageRank的两种串行迭代求解算法

我们在博客《数值分析:幂迭代和PageRank算法(Numpy实现)》算法中提到过用幂法求解PageRank。
给定有向图


我们可以写出其马尔科夫概率转移矩阵MMM(第iii列对应对iii节点的邻居并沿列归一化)

⎛⎝⎜⎜01212001100⎞⎠⎟⎟(00112001210)\left(\begin{array}{lll}
0 & 0 & 1 \
\frac{1}{2} & 0 & 0 \
\frac{1}{2} & 1 & 0
\end{array}\right)
然后我们定义Google矩阵为

G=qnE+(1−q)MG=qnE+(1−q)MG=\frac{q}{n} E+(1-q) M
此处qqq为上网者从一个页面转移到另一个随机页面的概率(一般为0.15),1−q1−q1-q 为点击当前页面上链接的概率,EEE为元素全1的n×nn×nn\times n 矩阵( nnn 为节点个数)。

而PageRank算法可以视为求解Google矩阵占优特征值(对于随机矩阵而言,即1)对应的特征向量。设初始化Rank向量为 xxx( xixix_i 为页面iii的Rank值),则我们可以采用幂法来求解:

xt+1=Gxtxt+1=Gxtx_{t+1}=G x_{t}
(每轮迭代后要归一化)

现实场景下的图大多是稀疏图,即MMM是稀疏矩阵。幂法中计算 (1−q)Mxt(1−q)Mxt(1-q)Mx_t ,对于节点 iii 需使用reduceByKey()(key为节点编号)操作。计算 qnExtqnExt\frac{q}{n}{E}x_t 则需要对所有节点的Rank进行reduce()操作,操作颇为繁复。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值