离散周期信号傅里叶级数 — Fourier Series of Discrete-Time Periodic Signals

连续信号通常是数学领域里的理论研究对象,而现实生活中我们遇到的信号往往是离散的,且计算机只能处理有限长度的离散信号。所以为了让傅立叶分析解决实际问题,有必要将其推广到离散信号领域。【阅读本文前,建议先了解连续周期信号傅里叶级数
signals
连续周期信号和离散周期信号如上图:左图为连续周期正弦波 x ( t ) = x ( t + T ) x(t)=x(t+T) x(t)=x(t+T),其中周期 T = 2 π T=2\pi T=2π;右图为左图正弦波的周期离散采样, x [ n ] = x [ n + N ] x[n]=x[n+N] x[n]=x[n+N],其中周期 N = 10 N=10 N=10

和连续周期信号傅立叶级数基于一样的猜想,离散周期信号傅立叶级数是想寻得一组不同振幅、不同频率和不同相位的正弦离散函数以表达某离散周期信号。即:
x [ n ] = C + ∑ k = 1 ∞ a k sin ⁡ ( k w 0 n ) + ∑ k = 1 ∞ b k cos ⁡ ( k w 0 n ) x[n] = C + \sum_{k=1}^{\infty}a_{k}\sin(kw_{0}n) + \sum_{k=1}^{\infty}b_{k}\cos(kw_{0}n) x[n]=C+k=1aksin(kw0n)+k=1bkcos(kw0n)

其中 w 0 = 2 π N w_{0}=\frac{2\pi}{N} w0=N2π。根据欧拉公式 e i x = cos ⁡ ( x ) + i sin ⁡ ( x ) e^{ix}=\cos(x)+i\sin(x) eix=cos(x)+isin(x)得:
{ cos ⁡ ( x ) = e i x + e − i x 2 sin ⁡ ( x ) = e i x − e − i x 2 i \begin{cases} \cos(x) = \frac{e^{ix}+e^{-ix}}{2} \\ \sin(x) = \frac{e^{ix}-e^{-ix}}{2i} \end{cases} {cos(x)=2eix+eixsin(x)=2ieixeix

因此,上式可推导为:
x [ n ] = C + ∑ k = 1 ∞ ( a k e i k w 0 n − e − i k w 0 n 2 i + b k e i k w 0 n + e − i k w 0 n 2 ) = C + ∑ k = 1 ∞ ( i a k − b k 2 e i k w 0 n + − i a k − b k 2 e − i k w 0 n ) \begin{aligned} & x[n] = C + \sum_{k=1}^{\infty}(a_{k}\frac{e^{ikw_{0}n}-e^{-ikw_{0}n}}{2i} + b_{k}\frac{e^{ikw_{0}n}+e^{-ikw_{0}n}}{2}) \\ & = C + \sum_{k=1}^{\infty}(\frac{ia_{k}-b_{k}}{2}e^{ikw_{0}n} + \frac{-ia_{k}-b_{k}}{2}e^{-ikw_{0}n}) \\ \end{aligned} x[n]=C+k=1(ak2ieikw0neikw0n+bk2eikw0n+eikw0n)=C+k=1(2iakbkeikw0n+2iakbkeikw0n)

A k = i a k − b k 2 A_{k} = \frac{ia_{k}-b_{k}}{2} Ak=2iakbk B k = − i a k − b k 2 B_{k} = \frac{-ia_{k}-b_{k}}{2} Bk=2iakbk,得到 x [ n ] 的 傅 立 叶 级 数 复 数 形 式 的 表 达 式 x[n]的傅立叶级数复数形式的表达式 x[n]
x [ n ] = C e i 0 w 0 n + ∑ k = 1 ∞ A k e i k w 0 n + ∑ k = 1 ∞ B k e − i k w 0 n = ∑ k = − 1 − ∞ B − k e i k w 0 n + C e i 0 w 0 n + ∑ k = 1 ∞ A k e i k w 0 n = ∑ k = − ∞ ∞ D k e i k w 0 n \begin{aligned} & x[n] = Ce^{i0w_{0}n} + \sum_{k=1}^{\infty}A_{k}e^{ikw_{0}n} + \sum_{k=1}^{\infty}B_{k}e^{-ikw_{0}n} \\ & = \sum_{k=-1}^{-\infty}B_{-k}e^{ikw_{0}n} + Ce^{i0w_{0}n} + \sum_{k=1}^{\infty}A_{k}e^{ikw_{0}n} \\ & = \sum_{k=-\infty}^{\infty}D_{k}e^{ikw_{0}n} \end{aligned} x[n]=Cei0w0n+k=1Akeikw0n+k=1Bkeikw0n=k=1Bkeikw0n+Cei0w0n+k=1Akeikw0n=k=Dkeikw0n

我们接着观察该级数中的单项 e i k w 0 n e^{ikw_{0}n} eikw0n
ϕ k [ n ] = e i k w 0 n = e i k 2 π N n , n = 0 , ± 1 , ± 2 , … \phi_{k}[n] = e^{ikw_{0}n} = e^{ik\frac{2\pi}{N}n}, n=0,\pm1,\pm2, \dots ϕk[n]=eikw0n=eikN2πn,n=0,±1,±2,
先说结论: ϕ k [ n ] = ϕ k + r N [ n ] \phi_{k}[n]=\phi_{k+rN}[n] ϕk[n]=ϕk+rN[n],其中 k = 0 , ± 1 , ± 2 , … k=0,\pm1,\pm2, \dots k=0,±1,±2, r = 0 , 1 , 2 , … r=0,1,2,\dots r=0,1,2, N N N为离散信号 x [ n ] x[n] x[n]的变化周期。证明过程如下:
ϕ k + r N [ n ] = e i ( k + r N ) 2 π N n = e i k 2 π N n e i r 2 π n = e i k 2 π N n ( e i 2 π ) r n = e i k 2 π N n ( cos ⁡ ( 2 π ) + i sin ⁡ ( 2 π ) ) r n = e i k 2 π N n ( 1 ) r n = e i k 2 π N n = ϕ k [ n ] \begin{aligned} & \phi_{k+rN}[n] = e^{i(k+rN)\frac{2\pi}{N}n}=e^{ik\frac{2\pi}{N}n}e^{ir{2\pi}n} = e^{ik\frac{2\pi}{N}n}(e^{i{2\pi}})^{rn} \\ & = e^{ik\frac{2\pi}{N}n}(\cos(2\pi) +i\sin(2\pi))^{rn} \\ & = e^{ik\frac{2\pi}{N}n}(1)^{rn} \\ & = e^{ik\frac{2\pi}{N}n} = \phi_{k}[n] \end{aligned} ϕk+rN[n]=ei(k+rN)N2πn=eikN2πneir2πn=eikN2πn(ei2π)rn=eikN2πn(cos(2π)+isin(2π))rn=eikN2πn(1)rn=eikN2πn=ϕk[n]

因此,得到离散周期信号 x [ n ] x[n] x[n]的傅立叶级数如下:
x [ n ] = ∑ k = &lt; N &gt; X k e i k 2 π N n x[n] = \sum_{k=&lt;N&gt;}^{}X_{k}e^{ik\frac{2\pi}{N}n} x[n]=k=<N>XkeikN2πn

给出: ∑ n = &lt; N &gt; e i k 2 π N n = { N , k = 0 , ± N , ± 2 N , … 0 , o t h e r w i s e \sum_{n=&lt;N&gt;}^{}e^{ik\frac{2\pi}{N}n} = \begin{cases} N, &amp; k=0, \pm{N}, \pm{2N}, \dots \\ 0, &amp; otherwise \end{cases} n=<N>eikN2πn={N,0,k=0,±N,±2N,otherwise S = ∑ n = &lt; N &gt; e i k 2 π N n S = \sum_{n=&lt;N&gt;}^{}e^{ik\frac{2\pi}{N}n} S=n=<N>eikN2πn,证明过程如下: S ( 1 k N − 1 ) = e i k 2 π N S − S = e i k 2 π N N − e i k 2 π N 0 = e i k 2 π − 1 = 1 k − 1 = 0 S(1^{\frac{k}{N}}-1) = e^{ik\frac{2\pi}{N}}S-S = e^{ik\frac{2\pi}{N}N} - e^{ik\frac{2\pi}{N}0} = e^{ik{2\pi}} - 1=1^{k}-1 = 0 S(1Nk1)=eikN2πSS=eikN2πNeikN2π0=eik2π1=1k1=0 由上式可知,当 k ≠ 0 , ± N , ± 2 N , … k \neq 0, \pm{N}, \pm{2N}, \dots k̸=0,±N,±2N,时: ( 1 k N − 1 ) ≠ 0 且 S = ∑ n = &lt; N &gt; e i k 2 π N n = 0 (1^{\frac{k}{N}}-1) \neq 0 且 S = \sum_{n=&lt;N&gt;}^{}e^{ik\frac{2\pi}{N}n} = 0 (1Nk1)̸=0S=n=<N>eikN2πn=0 k = 0 , ± N , ± 2 N , … k = 0, \pm{N}, \pm{2N}, \dots k=0,±N,±2N,时: S = ∑ n = &lt; N &gt; e i k 2 π N n = ∑ n = &lt; N &gt; ( e i 2 π ) k N n = ∑ n = &lt; N &gt; ( 1 ) r n = N , r = 0 , ± 1 , ± 2 , … S = \sum_{n=&lt;N&gt;}^{}e^{ik\frac{2\pi}{N}n} = \sum_{n=&lt;N&gt;}^{}(e^{i2\pi} )^{\frac{k}{N}n} = \sum_{n=&lt;N&gt;}^{}(1)^{rn} = N, r = 0,\pm1,\pm2,\dots S=n=<N>eikN2πn=n=<N>(ei2π)Nkn=n=<N>(1)rn=N,r=0,±1,±2,

现在,对离散周期信号 x [ n ] x[n] x[n]每时刻的信号求和,并乘以 e − i r 2 π N n e^{-ir\frac{2\pi}{N}n} eirN2πn得:
∑ n = &lt; N &gt; x [ n ] e − i r 2 π N n = ∑ n = &lt; N &gt; ∑ k = &lt; N &gt; X k e i ( k − r ) 2 π N n = ∑ k = &lt; N &gt; X k ∑ n = &lt; N &gt; e i ( k − r ) 2 π N n \sum_{n=&lt;N&gt;}^{} x[n] e^{-ir\frac{2\pi}{N}n} = \sum_{n=&lt;N&gt;}^{} \sum_{k=&lt;N&gt;}^{}X_{k}e^{i(k-r)\frac{2\pi}{N}n} = \sum_{k=&lt;N&gt;}^{} X_{k} \sum_{n=&lt;N&gt;}^{}e^{i(k-r)\frac{2\pi}{N}n} n=<N>x[n]eirN2πn=n=<N>k=<N>Xkei(kr)N2πn=k=<N>Xkn=<N>ei(kr)N2πn

由上面给出的公式可以得出,当 k − r = 0 k-r=0 kr=0时, ∑ n = &lt; N &gt; e i ( k − r ) 2 π N n = N \sum_{n=&lt;N&gt;}^{}e^{i(k-r)\frac{2\pi}{N}n} = N n=<N>ei(kr)N2πn=N;当 k − r ≠ 0 k-r \neq 0 kr̸=0时, ∑ n = &lt; N &gt; e i ( k − r ) 2 π N n = 0 \sum_{n=&lt;N&gt;}^{}e^{i(k-r)\frac{2\pi}{N}n} = 0 n=<N>ei(kr)N2πn=0。所以:
∑ n = &lt; N &gt; x [ n ] e − i r 2 π N n = ∑ k = &lt; N &gt; X k ∑ n = &lt; N &gt; e i ( k − r ) 2 π N n = X r N \sum_{n=&lt;N&gt;}^{} x[n] e^{-ir\frac{2\pi}{N}n} = \sum_{k=&lt;N&gt;}^{} X_{k} \sum_{n=&lt;N&gt;}^{}e^{i(k-r)\frac{2\pi}{N}n} = X_{r} N n=<N>x[n]eirN2πn=k=<N>Xkn=<N>ei(kr)N2πn=XrN

即:
X r = 1 N ∑ n = &lt; N &gt; x [ n ] e − i r 2 π N n X_{r} = \frac{1}{N} \sum_{n=&lt;N&gt;}^{} x[n] e^{-ir\frac{2\pi}{N}n} Xr=N1n=<N>x[n]eirN2πn

至此,我们已经得到离散周期信号 x [ n ] x[n] x[n]的傅立叶级数(如下):
x [ n ] = ∑ k = &lt; N &gt; X k e i k 2 π N n x[n] = \sum_{k=&lt;N&gt;}^{}X_{k}e^{ik\frac{2\pi}{N}n} x[n]=k=<N>XkeikN2πn

其中, X k = 1 N ∑ n = &lt; N &gt; x [ n ] e − i k 2 π N n X_{k} = \frac{1}{N} \sum_{n=&lt;N&gt;}^{} x[n] e^{-ik\frac{2\pi}{N}n} Xk=N1n=<N>x[n]eikN2πn

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值