DeepSeek 实用集成

将 DeepSeek 大模型能力轻松接入各类软件

应用程序

Chatbox一个支持多种流行LLM模型的桌面客户端,可在 Windows、Mac 和 Linux 上使用
ChatGPT-Next-Web一键获取跨平台ChatGPT网页用户界面,支持流行的LLM
留白记事留白让你直接在微信上使用 DeepSeek 管理你的笔记、任务、日程和待办清单!
Pal - AI Chat Client(iOS, ipadOS)一款可以在 iPhone 或 iPad 上使用的 AI 助手
LibreChatLibreChat 是一个可定制的开源应用程序,无缝集成了 DeepSeek,以增强人工智能交互体验
PapersGPTPapersGPT是一款集成了DeepSeek及其他多种AI模型的辅助论文阅读的Zotero插件.
RSS翻译器开源、简洁、可自部署的RSS翻译器

Icon

EnconvoEnconvo是AI时代的启动器,是所有AI功能的入口,也是一位体贴的智能助理.
Cherry Studio一款为创造者而生的桌面版 AI 助手
ToMemo (iOS, ipadOS)一款短语合集 + 剪切板历史 + 键盘输出的iOS应用,集成了AI大模型,可以在键盘中快速输出使用。

Icon

Video Subtitle Master批量为视频生成字幕,并可将字幕翻译成其它语言。这是一个客户端工具, 跨平台支持 mac 和 windows 系统, 支持百度,火山,deeplx, openai, deepseek, ollama 等多个翻译服务

Icon

EasydictEasydict 是一个简洁易用的词典翻译 macOS App,能够轻松优雅地查找单词或翻译文本,支持调用大语言模型 API 翻译。
RaycastRaycast 是一款 macOS 生产力工具,它允许你用几个按键来控制你的工具。它支持各种扩展,包括 DeepSeek AI。
Nice PromptNice Prompt 是一个结合提示工程与社交功能的平台,支持用户高效创建、分享和协作开发AI提示词。
ZoteroZotero 是一款免费且易于使用的文献管理工具,旨在帮助您收集、整理、注释、引用和分享研究成果。
思源笔记思源笔记是一款隐私优先的个人知识管理系统,支持完全离线使用,并提供端到端加密的数据同步功能。
go-stockgo-stock 是一个由 Wails 使用 NativeUI 构建并由 LLM 提供支持的股票数据查看分析器。
WordwareWordware 这是一个工具包,使任何人都可以仅通过自然语言构建、迭代和部署他们的AI堆栈
DifyDify 是一个支持 DeepSeek 模型的 LLM 应用开发平台,可用于创建 AI 助手、工作流、文本生成器等应用。
LiberSonoraLiberSonora,寓意"自由的声音",是一个 AI 赋能的、强大的、开源有声书工具集,包含智能字幕提取、AI标题生成、多语言翻译等功能,支持 GPU 加速、批量离线处理

Icon

BobBob 是一款 macOS 平台的翻译和 OCR 软件,您可以在任何应用程序中使用 Bob 进行翻译和 OCR,即用即走!
STranslateSTranslate(Windows) 是 WPF 开发的一款即用即走的翻译、OCR工具
GPT AI Flow工程师为效率狂人(他们自己)打造的终极生产力武器: GPT AI Flow
  • `Shift+Alt+空格` 唤醒桌面智能中枢
  • 本地加密存储
  • 自定义指令引擎
  • 按需调用拒绝订阅捆绑
Story-Flicks通过一句话即可快速生成高清故事短视频,支持 DeepSeek 等模型。

AI Agent 框架

Anda一个专为 AI 智能体开发设计的 Rust 语言框架,致力于构建高度可组合、自主运行且具备永久记忆能力的 AI 智能体网络。
YoMoStateful Serverless LLM Function Calling Framework with Strongly-typed Language Support
Alice一个基于 ICP 的自主 AI 代理,利用 DeepSeek 等大型语言模型进行链上决策。Alice 结合实时数据分析和独特的个性,管理代币、挖掘 BOB 并参与生态系统治理。

RAG 框架

RAGFlow一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

Solana 框架

Solana Agent Kit一个用于连接 AI 智能体到 Solana 协议的开源工具包。现在,任何使用 Deepseek LLM 的智能体都可以自主执行 60+ 种 Solana 操作:

即时通讯插件

茴香豆(个人微信/飞书)一个集成到个人微信群/飞书群的领域知识助手,专注解答问题不闲聊
LangBot(QQ, 企微, 飞书)大模型原生即时通信机器人平台,适配 QQ / QQ频道 / 飞书 / OneBot / 企业微信(wecom) 等多种消息平台
NoneBot(QQ, 飞书, Discord, TG, etc.)基于 NoneBot 框架,支持智能对话与深度思考功能。适配 QQ / 飞书 / Discord, TG 等多种消息平台

浏览器插件

沉浸式翻译一款双语对照网页翻译插件,简洁,高效
沉浸式导读NO Sidebar!!! 沉浸式的 AI 网页摘要,提问...
ChatGPT Box将 LLM 作为私人助手,整合到你的浏览器中
划词翻译整合了多家翻译 API 以及 LLM API 的浏览器翻译插件
欧路翻译提供鼠标划词搜索、逐段对照翻译、PDF文献翻译功能。可以使用支持 DeepSeek AI, Bing、GPT、Google等多种翻译引擎。
流畅阅读一款革新性的浏览器开源翻译插件,让所有人都能够拥有基于母语般的阅读体验
馆长知识库AI问答助手 - 让AI帮助你整理与分析知识
RssFlow一款智能的RSS阅读器浏览器扩展,具有AI驱动的RSS摘要和多维度订阅视图功能。支持配置DeepSeek模型以增强内容理解能力。

VS Code 插件

Continue开源 IDE 插件,使用 LLM 做你的编程助手
ClineCline 是一款能够使用您的 CLI 和编辑器的 AI 助手。

neovim 插件

avante.nvim开源 IDE 插件,使用 LLM 做你的编程助手
llm.nvim免费的大语言模型插件,让你在Neovim中与大模型交互,支持任意一款大模型,比如Deepseek,GPT,GLM,kimi或者本地运行的大模型(比如ollama)
codecompanion.nvimAI 驱动的编码,在 Neovim 中无缝集成.

JetBrains 插件

Chinese-English Translate集成了多家国内翻译和ai厂商,将中文翻译到英文的插件。
AI Git Commit使用AI生成git commit message的插件。

其它

ShellOracle一种用于智能 shell 命令生成的终端工具。
深度求索(快捷指令)使用 DeepSeek API 增强Siri能力的快捷指令
n8n-nodes-deepseek一个 N8N 的社区节点,支持直接使用 DeepSeek API 集成到工作流中
promptfoo测试和评估LLM提示,包括DeepSeek模型。比较不同的LLM提供商,捕获回归,并评估响应。
deepseek-tokenizer一个高效的轻量级tokenization库,仅依赖`tokenizers`库,不依赖`transformers`等重量级依赖。
CRdeepseek-review🚀 使用 Deepseek 进行代码审核,支持 GitHub Action 和本地 🚀
WordPress ai助手对接Deepseek api用于WordPress站点的ai对话助手、ai文章生成、ai文章总结插件。
### DeepSeek-V2.5的实用集成涉及多个方面,包括环境配置、数据准备、模型调用和性能优化。 #### 环境配置 为了确保DeepSeek-V2.5能够顺利运行,需要搭建合适的开发环境。这通常涉及到安装必要的依赖库和支持工具。具体而言,可以使用虚拟环境来隔离项目的依赖项,从而避免版本冲突等问题[^1]。 ```bash python -m venv deepseek_env source deepseek_env/bin/activate # Linux/MacOS deepseek_env\Scripts\activate # Windows pip install -r requirements.txt ``` #### 数据准备 高质量的数据对于任何机器学习项目都至关重要。针对DeepSeek-V2.5的应用场景,需收集并预处理相应的训练数据集。这些操作可能包括清洗噪声、标注类别标签以及划分训练验证测试集合等步骤。 #### 模型调用 一旦完成了前期准备工作之后,则可以通过API接口轻松地调用DeepSeek-V2.5的功能模块来进行预测分析或其他任务执行工作。下面是一个简单的Python脚本示例: ```python from deepseek import load_model, predict model_path = "path/to/deepseek_v2_5" loaded_model = load_model(model_path) input_data = [...] # 输入待测样本特征向量列表 predictions = predict(loaded_model, input_data) print(predictions) ``` #### 性能优化 最后,在实际部署过程中还需要关注系统的响应速度与资源利用率等方面的表现情况,并据此采取相应措施加以改进。例如调整超参数设置、采用分布式计算框架等方式提高效率降低延迟时间等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值